Logo

Introduction to Spectral Theory of Schrödinger Operators

Small book cover: Introduction to Spectral Theory of Schrödinger Operators

Introduction to Spectral Theory of Schrödinger Operators
by

Publisher: Vinnitsa State Pedagogical University
Number of pages: 112

Description:
Contents: A bit of quantum mechanics; Operators in Hilbert spaces; Spectral theorem of self-adjoint operators; Compact operators and the Hilbert-Schmidt theorem; Perturbation of discrete spectrum; Variational principles; One-dimensional Schroedinger operator; Periodic Schroedinger operators; etc.

Download or read it online for free here:
Download link
(700KB, PDF)

Similar books

Book cover: A Mathematics Primer for Physics Graduate StudentsA Mathematics Primer for Physics Graduate Students
by
The author summarizes most of the more advanced mathematical trickery seen in electrodynamics and quantum mechanics in simple and friendly terms with examples. Mathematical tools such as tensors or differential forms are covered in this text.
(25311 views)
Book cover: LieART: A Mathematica Application for Lie Algebras and Representation TheoryLieART: A Mathematica Application for Lie Algebras and Representation Theory
by - arXiv
We present the Mathematica application LieART (Lie Algebras and Representation Theory) for computations in Lie Algebras and representation theory, such as tensor product decomposition and subalgebra branching of irreducible representations.
(10633 views)
Book cover: Classical and Quantum Mechanics via Lie algebrasClassical and Quantum Mechanics via Lie algebras
by - arXiv
This book presents classical, quantum, and statistical mechanics in an algebraic setting, thereby introducing mathematicians, physicists, and engineers to the ideas relating classical and quantum mechanics with Lie algebras and Lie groups.
(14089 views)
Book cover: Foundations Of Potential TheoryFoundations Of Potential Theory
by - Springer
The present volume gives a systematic treatment of potential functions. It has a purpose to serve as an introduction for students and to provide the reader with the fundamentals of the subject, so that he may proceed immediately to the applications.
(7426 views)