Logo

Phase Transitions and Collective Phenomena

Small book cover: Phase Transitions and Collective Phenomena

Phase Transitions and Collective Phenomena
by

Publisher: University of Cambridge
Number of pages: 119

Description:
Contents -- Preface; Chapter 1: Critical Phenomena; Chapter 2: Ginzburg-Landau Theory; Chapter 3: Scaling Theory; Chapter 4: Renormalisation Group; Chapter 5: Topological Phase Transitions; Chapter 6: Functional Methods in Quantum Mechanics.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Introduction to Nonequilibrium Statistical Mechanics with Quantum FieldIntroduction to Nonequilibrium Statistical Mechanics with Quantum Field
by - arXiv
The author presents a concise and self-contained introduction to nonequilibrium statistical mechanics with quantum field theory. Readers are assumed to be familiar with the Matsubara formalism of equilibrium statistical mechanics.
(7533 views)
Book cover: Bosonization of Interacting Fermions in Arbitrary DimensionsBosonization of Interacting Fermions in Arbitrary Dimensions
by - arXiv
In this book we describe a new non-perturbative approach to the fermionic many-body problem, which can be considered as a generalization to arbitrary dimensions of the well-known bosonization technique for one-dimensional fermions.
(6541 views)
Book cover: Introduction to the theory of stochastic processes and Brownian motion problemsIntroduction to the theory of stochastic processes and Brownian motion problems
by - arXiv
Contents: Stochastic variables; Stochastic processes and Markov processes; The master equation; The Langevin equation; Linear response theory, dynamical susceptibilities, and relaxation times; Langevin and Fokker–Planck equations; etc.
(7235 views)
Book cover: Non-equilibrium Statistical MechanicsNon-equilibrium Statistical Mechanics
by - arXiv
We review some of the many recent activities on non-equilibrium statistical mechanics, focusing on general aspects. Using the language of stochastic Markov processes, we emphasize general properties of the evolution of configurational probabilities.
(6421 views)