**A First Course in Linear Algebra**

by Robert A. Beezer

**Publisher**: University of Puget Sound 2010**ISBN/ASIN**: B00262XN6S**Number of pages**: 1035

**Description**:

A First Course in Linear Algebra is an introductory textbook aimed at college-level sophomores and juniors. Typically such a student will have taken calculus, but this is not a prerequisite. The book begins with systems of linear equations, then covers matrix algebra, before taking up finite-dimensional vector spaces in full generality. The final chapter covers matrix representations of linear transformations, through diagonalization, change of basis and Jordan canonical form. Along the way, determinants and eigenvalues get fair time.

Download or read it online for free here:

**Download link**

(7.6MB, PDF)

## Similar books

**Linear Algebra: Course**

by

**Peter Saveliev**

This is a textbook for a one-semester course in linear algebra and vector spaces. An emphasis is made on the coordinate free analysis. The course mimics in some ways a modern algebra course. Calculus is a prerequisite for the course.

(

**4206**views)

**Fundamentals of Linear Algebra**

by

**Marcel B. Finan**-

**Arkansas Tech University**

This book is addressed primarely to second and third year college students who have already had a course in calculus and analytic geometry. Its aim is solely to learn the basic theory of linear algebra within a semester period.

(

**8460**views)

**Linear Algebra**

by

**Paul Dawkins**-

**Lamar University**

These topics are covered: Systems of Equations and Matrices; Determinants; Euclidean n-space; Vector Spaces; Eigenvalues and Eigenvectors. These notes do assume that the reader has a good working knowledge of basic Algebra.

(

**11401**views)

**Linear Algebra for Informatics**

by

**JosÃ© Figueroa-O'Farrill**-

**The University of Edinburgh**

These are the lecture notes and tutorial problems for the Linear Algebra module. The text is divided into three parts: (1) real vector spaces and their linear maps; (2) univariate polynomials; (3) introduction to algebraic coding theory.

(

**9627**views)