**A First Course in Linear Algebra**

by Robert A. Beezer

**Publisher**: University of Puget Sound 2010**ISBN/ASIN**: B00262XN6S**Number of pages**: 1035

**Description**:

A First Course in Linear Algebra is an introductory textbook aimed at college-level sophomores and juniors. Typically such a student will have taken calculus, but this is not a prerequisite. The book begins with systems of linear equations, then covers matrix algebra, before taking up finite-dimensional vector spaces in full generality. The final chapter covers matrix representations of linear transformations, through diagonalization, change of basis and Jordan canonical form. Along the way, determinants and eigenvalues get fair time.

Download or read it online for free here:

**Download link**

(7.6MB, PDF)

## Similar books

**Linear Algebra for Informatics**

by

**JosÃ© Figueroa-O'Farrill**-

**The University of Edinburgh**

These are the lecture notes and tutorial problems for the Linear Algebra module. The text is divided into three parts: (1) real vector spaces and their linear maps; (2) univariate polynomials; (3) introduction to algebraic coding theory.

(

**8460**views)

**Linear Algebra: Course**

by

**Peter Saveliev**-

**Intelligent Perception**

This is a textbook for a one-semester course in linear algebra and vector spaces. An emphasis is made on the coordinate free analysis. The course mimics in some ways a modern algebra course. Calculus is a prerequisite for the course.

(

**2846**views)

**A First Course in Linear Algebra**

by

**Ken Kuttler**-

**Lyryx**

The book presents an introduction to the fascinating subject of linear algebra. It is designed as a course in linear algebra for students who have a reasonable understanding of basic algebra. Major topics of linear algebra are presented in detail.

(

**2102**views)

**Elements of Abstract and Linear Algebra**

by

**Edwin H. Connell**

Covers abstract algebra in general, with the focus on linear algebra, intended for students in mathematics, physical sciences, and computer science. The presentation is compact, but still somewhat informal. The proofs of many theorems are omitted.

(

**11687**views)