Logo

A Course In Algebraic Number Theory

A Course In Algebraic Number Theory
by

Publisher: University of Illinois

Description:
This is a text for a basic course in algebraic number theory, written to provide reasonable coverage for a one-semester course. The text covers the general theory of factorization of ideals in Dedekind domains, detailed calculations illustrating the use of Kummer’s theorem, the factorization of prime ideals in Galois extensions, local and global fields, etc. A standard graduate course in algebra is assumed as prerequisite.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Algebraic Number TheoryAlgebraic Number Theory
by
Contents: Preliminaries From Commutative Algebra; Rings of Integers; Dedekind Domains; Factorization; The Finiteness of the Class Number; The Unit Theorem; Cyclotomic Extensions; Fermat's Last Theorem; Valuations; Local Fields; Global Fields.
(10070 views)
Book cover: Lectures on Field Theory and Ramification TheoryLectures on Field Theory and Ramification Theory
by - Indian Institute of Technology, Bombay
These are notes of a series of lectures, aimed at covering the essentials of Field Theory and Ramification Theory as may be needed for local and global class field theory. Included are the two sections on cyclic extensions and abelian extensions.
(5620 views)
Book cover: Lectures on Siegel Modular Forms and Representation by Quadratic FormsLectures on Siegel Modular Forms and Representation by Quadratic Forms
by - Tata Institute of Fundamental Research
This book is concerned with the problem of representation of positive definite quadratic forms by other such forms. From the table of contents: Preface; Fourier Coefficients of Siegel Modular Forms; Arithmetic of Quadratic Forms.
(3561 views)
Book cover: Heegner Points and Rankin L-SeriesHeegner Points and Rankin L-Series
by - Cambridge University Press
This volume has the Gross-Zagier formula and its avatars as a common unifying theme. It covers the theory of complex multiplication, automorphic forms, the Rankin-Selberg method, arithmetic intersection theory, Iwasawa theory, and other topics.
(5174 views)