A Course In Algebraic Number Theory
by Robert B. Ash
Publisher: University of Illinois 2003
Number of pages: 108
Description:
This is a text for a basic course in algebraic number theory, written to provide reasonable coverage for a one-semester course. The text covers the general theory of factorization of ideals in Dedekind domains, detailed calculations illustrating the use of Kummer’s theorem, the factorization of prime ideals in Galois extensions, local and global fields, etc. A standard graduate course in algebra is assumed as prerequisite.
Download or read it online for free here:
Download link
(3.4MB, PDF)
Similar books
Lectures on Siegel Modular Forms and Representation by Quadratic Formsby Y. Kitaoka - Tata Institute of Fundamental Research
This book is concerned with the problem of representation of positive definite quadratic forms by other such forms. From the table of contents: Preface; Fourier Coefficients of Siegel Modular Forms; Arithmetic of Quadratic Forms.
(8610 views)
Notes on the Theory of Algebraic Numbersby Steve Wright - arXiv
This is a series of lecture notes on the elementary theory of algebraic numbers, using only knowledge of a first-semester graduate course in algebra (primarily groups and rings). No prerequisite knowledge of fields is required.
(7985 views)
An Introduction to Algebraic Number Theoryby F. Oggier - Nanyang Technological University
Contents: Algebraic numbers and algebraic integers (Rings of integers, Norms and Traces); Ideals (Factorization and fractional ideals, The Chinese Theorem); Ramification theory; Ideal class group and units; p-adic numbers; Valuations; p-adic fields.
(11823 views)
Lectures on Topics in Algebraic Number Theoryby Sudhir R. Ghorpade - Indian Institute of Technology, Bombay
These lecture notes give a rapid introduction to some basic aspects of Algebraic Number Theory with as few prerequisites as possible. Topics: Field Extensions; Ring Extensions; Dedekind Domains and Ramification Theory; Class Number and Lattices.
(11777 views)