Linear algebra via exterior products

Linear algebra via exterior products

Publisher: Ludwig-Maximilians University
Number of pages: 82

A pedagogical introduction to the coordinate-free approach in basic finite-dimensional linear algebra. The reader should be already exposed to the elementary array-based formalism of vector and matrix calculations. In this book, the author makes extensive use of the exterior product of vectors. He shows how the standard properties of determinants, the Liouville formula, the Hamilton-Cayley theorem, and Pfaffians, as well as some results concerning eigenspace projectors can be derived without cumbersome matrix calculations.

Home page url

Download or read it online for free here:
Download link
(1.6MB, PDF)

Similar books

Book cover: Linear Algebra Examples C-1: Linear equations, matrices and determinantsLinear Algebra Examples C-1: Linear equations, matrices and determinants
by - BookBoon
The book is a collection of solved problems in linear equations, matrices and determinants. All examples are solved, and the solutions consist of step-by-step instructions, and are designed to assist students in methodically solving problems.
Book cover: Applied and Computational Linear Algebra: A First CourseApplied and Computational Linear Algebra: A First Course
by - University of Massachusetts Lowell
This book is a text for a graduate course that focuses on applications of linear algebra and on the algorithms used to solve the problems that arise in those applications. Tthe particular nature of the applications will prompt us to seek algorithms.
Book cover: Linear Algebra: Theorems and ApplicationsLinear Algebra: Theorems and Applications
by - InTech
This book contains selected topics in linear algebra, which represent the recent contributions in the field. It includes a range of theorems and applications in different branches of linear algebra, such as linear systems, matrices, operators, etc.
Book cover: Lectures on Linear Algebra and MatricesLectures on Linear Algebra and Matrices
by - Texas A&M University
Contents: Vectors and Vector Spaces; Matrices and Linear Algebra; Eigenvalues and Eigenvectors; Unitary Matrices; Hermitian Theory; Normal Matrices; Factorization Theorems; Jordan Normal Form; Hermitian and Symmetric Matrices; Nonnegative Matrices.