**Linear algebra via exterior products**

by Sergei Winitzki

**Publisher**: Ludwig-Maximilians University 2009**Number of pages**: 82

**Description**:

A pedagogical introduction to the coordinate-free approach in basic finite-dimensional linear algebra. The reader should be already exposed to the elementary array-based formalism of vector and matrix calculations. In this book, the author makes extensive use of the exterior product of vectors. He shows how the standard properties of determinants, the Liouville formula, the Hamilton-Cayley theorem, and Pfaffians, as well as some results concerning eigenspace projectors can be derived without cumbersome matrix calculations.

Download or read it online for free here:

**Download link**

(1.6MB, PDF)

## Similar books

**A Second Semester of Linear Algebra**

by

**S. E. Payne**-

**University of Colorado Denver**

This book is written as a text for a second semester of linear algebra at the senior or first-year-graduate level. It is assumed that you already have successfully completed a first course in linear algebra and a first course in abstract algebra.

(

**13761**views)

**Linear Algebra Examples C-1: Linear equations, matrices and determinants**

by

**Leif Mejlbro**-

**BookBoon**

The book is a collection of solved problems in linear equations, matrices and determinants. All examples are solved, and the solutions consist of step-by-step instructions, and are designed to assist students in methodically solving problems.

(

**11950**views)

**Linear Algebra C-4: Quadratic equations in two or three variables**

by

**Leif Mejlbro**-

**BookBoon**

The book is a collection of solved problems in linear algebra, this fourth volume covers quadratic equations in two or three variables. All examples are solved, and the solutions usually consist of step-by-step instructions.

(

**9723**views)

**Lectures on Linear Algebra and Matrices**

by

**G. Donald Allen**-

**Texas A&M University**

Contents: Vectors and Vector Spaces; Matrices and Linear Algebra; Eigenvalues and Eigenvectors; Unitary Matrices; Hermitian Theory; Normal Matrices; Factorization Theorems; Jordan Normal Form; Hermitian and Symmetric Matrices; Nonnegative Matrices.

(

**9636**views)