**Linear algebra via exterior products**

by Sergei Winitzki

**Publisher**: Ludwig-Maximilians University 2009**Number of pages**: 82

**Description**:

A pedagogical introduction to the coordinate-free approach in basic finite-dimensional linear algebra. The reader should be already exposed to the elementary array-based formalism of vector and matrix calculations. In this book, the author makes extensive use of the exterior product of vectors. He shows how the standard properties of determinants, the Liouville formula, the Hamilton-Cayley theorem, and Pfaffians, as well as some results concerning eigenspace projectors can be derived without cumbersome matrix calculations.

Download or read it online for free here:

**Download link**

(1.6MB, PDF)

## Similar books

**Linear Algebra, Infinite Dimensions, and Maple**

by

**James V. Herod**-

**Georgia Tech**

These notes are about linear operators on Hilbert Spaces. The text is an attempt to provide a way to understand the ideas without the students already having the mathematical maturity that a good undergraduate analysis course could provide.

(

**9687**views)

**An Introduction to Determinants**

by

**William Thomson**

Every important principle has been illustrated by copious examples, a considerable number of which have been fully worked out. As my main object has been to produce a textbook suitable for beginners, many important theorems have been omitted.

(

**2884**views)

**Differential Equations and Linear Algebra**

by

**Simon J.A. Malham**-

**Heriot-Watt University**

From the table of contents: Linear second order ODEs; Homogeneous linear ODEs; Non-homogeneous linear ODEs; Laplace transforms; Linear algebraic equations; Matrix Equations; Linear algebraic eigenvalue problems; Systems of differential equations.

(

**5658**views)

**Linear Algebra: Theorems and Applications**

by

**Hassan Abid Yasser (ed.)**-

**InTech**

This book contains selected topics in linear algebra, which represent the recent contributions in the field. It includes a range of theorems and applications in different branches of linear algebra, such as linear systems, matrices, operators, etc.

(

**6653**views)