**Linear algebra via exterior products**

by Sergei Winitzki

**Publisher**: Ludwig-Maximilians University 2009**Number of pages**: 82

**Description**:

A pedagogical introduction to the coordinate-free approach in basic finite-dimensional linear algebra. The reader should be already exposed to the elementary array-based formalism of vector and matrix calculations. In this book, the author makes extensive use of the exterior product of vectors. He shows how the standard properties of determinants, the Liouville formula, the Hamilton-Cayley theorem, and Pfaffians, as well as some results concerning eigenspace projectors can be derived without cumbersome matrix calculations.

Download or read it online for free here:

**Download link**

(1.6MB, PDF)

## Similar books

**Linear Algebra Examples C-1: Linear equations, matrices and determinants**

by

**Leif Mejlbro**-

**BookBoon**

The book is a collection of solved problems in linear equations, matrices and determinants. All examples are solved, and the solutions consist of step-by-step instructions, and are designed to assist students in methodically solving problems.

(

**12601**views)

**Applied and Computational Linear Algebra: A First Course**

by

**Charles L. Byrne**-

**University of Massachusetts Lowell**

This book is a text for a graduate course that focuses on applications of linear algebra and on the algorithms used to solve the problems that arise in those applications. Tthe particular nature of the applications will prompt us to seek algorithms.

(

**6880**views)

**Linear Algebra: Theorems and Applications**

by

**Hassan Abid Yasser (ed.)**-

**InTech**

This book contains selected topics in linear algebra, which represent the recent contributions in the field. It includes a range of theorems and applications in different branches of linear algebra, such as linear systems, matrices, operators, etc.

(

**6132**views)

**Lectures on Linear Algebra and Matrices**

by

**G. Donald Allen**-

**Texas A&M University**

Contents: Vectors and Vector Spaces; Matrices and Linear Algebra; Eigenvalues and Eigenvectors; Unitary Matrices; Hermitian Theory; Normal Matrices; Factorization Theorems; Jordan Normal Form; Hermitian and Symmetric Matrices; Nonnegative Matrices.

(

**10307**views)