Logo

Theory of the Integral by Stanislaw Saks

Large book cover: Theory of the Integral

Theory of the Integral
by

Publisher: Polish Mathematical Society
ISBN/ASIN: 0486446484
Number of pages: 347

Description:
Covering all the standard topics, the author begins with a discussion of the integral in an abstract space, additive classes of sets, measurable functions, and integration of sequences of functions. Succeeding chapters cover Caratheodory measure; functions of bounded variation and the Lebesgue-Stieltjes integral; the derivation of additive functions of a set and of an interval; and more.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Real Numbers and Fascinating FractionsReal Numbers and Fascinating Fractions
by
This text introduces the interesting and valuable concept of continued fractions. Contents: Two Historical Puzzles; Formation of Continued Fractions; Convergents; Non-terminating Continued Fractions; Approximation of Real Numbers.
(10481 views)
Book cover: Elementary Mathematical AnalysisElementary Mathematical Analysis
by - The Macmillan Company
The book presents a course suitable for students in the first year of our colleges, universities, and technical schools. It presupposes on the part of the student only the usual minimum entrance requirements in elementary algebra and plane geometry.
(6602 views)
Book cover: Reader-friendly Introduction to the Measure TheoryReader-friendly Introduction to the Measure Theory
by - Yetanotherquant.de
This is a very clear and user-friendly introduction to the Lebesgue measure theory. After reading these notes, you will be able to read any book on Real Analysis and will easily understand Lebesgue integral and other advanced topics.
(7164 views)
Book cover: Lectures on Topics in AnalysisLectures on Topics in Analysis
by - Tata Institute of Fundamental Research
Topics covered: Differentiable functions in Rn; Manifolds; Vector bundles; Linear differential operators; Cauchy Kovalevski Theorem; Fourier transforms, Plancherel's theorem; Sobolev spaces Hm,p; Elliptic differential operators; etc.
(6437 views)