Logo

Theory of the Integral by Stanislaw Saks

Large book cover: Theory of the Integral

Theory of the Integral
by

Publisher: Polish Mathematical Society
ISBN/ASIN: 0486446484
Number of pages: 347

Description:
Covering all the standard topics, the author begins with a discussion of the integral in an abstract space, additive classes of sets, measurable functions, and integration of sequences of functions. Succeeding chapters cover Caratheodory measure; functions of bounded variation and the Lebesgue-Stieltjes integral; the derivation of additive functions of a set and of an interval; and more.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Advanced Calculus and AnalysisAdvanced Calculus and Analysis
by - University of Aberdeen
Introductory calculus course, with some leanings to analysis. It covers sequences, monotone convergence, limits, continuity, differentiability, infinite series, power series, differentiation of functions of several variables, and multiple integrals.
(23641 views)
Book cover: Special Functions, a ReviewSpecial Functions, a Review
by - viXra
The present document is concerned with the review of the most frequently special functions applied in scientific fields. We review their principal properties and their interactions with different branches especially in mathematics ...
(3522 views)
Book cover: Lectures on Topics in AnalysisLectures on Topics in Analysis
by - Tata Institute of Fundamental Research
Topics covered: Differentiable functions in Rn; Manifolds; Vector bundles; Linear differential operators; Cauchy Kovalevski Theorem; Fourier transforms, Plancherel's theorem; Sobolev spaces Hm,p; Elliptic differential operators; etc.
(6616 views)
Book cover: Reader-friendly Introduction to the Measure TheoryReader-friendly Introduction to the Measure Theory
by - Yetanotherquant.de
This is a very clear and user-friendly introduction to the Lebesgue measure theory. After reading these notes, you will be able to read any book on Real Analysis and will easily understand Lebesgue integral and other advanced topics.
(7359 views)