An Introduction to the Smarandache Function
by Charles Ashbacher
Publisher: Erhus Univ Pr 1995
ISBN/ASIN: 1879585499
ISBN-13: 9781879585492
Number of pages: 62
Description:
As one of the oldest mathematical disciplines, the roots of number theory extend back into antiquity. Problems are often easy to state, but extremely difficult to solve, which is the origin of their charm. All mathematicians have a soft spot in their hearts for the "purity" of the integers. In the 1970's a Rumanian mathematician Florentin Smarandache created a new function in number theory.
The consequences of its simple definition encompass many areas of mathematics. The purpose of this text is to examine some of those consequences, giving the reader a taste for this unexplored territory.
Download or read it online for free here:
Download link
(1.6MB, PDF)
Similar books
by Felice Russo - American Research Press
The fascinating Smarandache's universe is halfway between the recreational mathematics and the number theory. This book presents new Smarandache functions, conjectures, solved and unsolved problems, new type sequences and new notions in number theory.
(13533 views)
by J. Arthur, D. Ellwood, R. Kottwitz - American Mathematical Society
The goal of this volume is to provide an entry point into the challenging field of the modern theory of automorphic forms. It is directed on the one hand at graduate students and professional mathematicians who would like to work in the area.
(13275 views)
by Greg W. Anderson - The University of Arizona
This is a compilation of exercises, worked examples and key references that the author compiled in order to help readers learn their way around fermionic Fock space. The text is suitable for use by graduate students with an interest in number theory.
(12641 views)
by Kenneth A. Ribet, William A. Stein - University of Washington
Contents: The Main objects; Modular representations and algebraic curves; Modular Forms of Level 1; Analytic theory of modular curves; Modular Symbols; Modular Forms of Higher Level; Newforms and Euler Products; Hecke operators as correspondences...
(10335 views)