 # An Introduction to the Smarandache Function An Introduction to the Smarandache Function
by

Publisher: Erhus Univ Pr
ISBN/ASIN: 1879585499
ISBN-13: 9781879585492
Number of pages: 62

Description:
As one of the oldest mathematical disciplines, the roots of number theory extend back into antiquity. Problems are often easy to state, but extremely difficult to solve, which is the origin of their charm. All mathematicians have a soft spot in their hearts for the "purity" of the integers. In the 1970's a Rumanian mathematician Florentin Smarandache created a new function in number theory. The consequences of its simple definition encompass many areas of mathematics. The purpose of this text is to examine some of those consequences, giving the reader a taste for this unexplored territory.

(1.6MB, PDF)

## Similar books Arithmetic Duality Theorems
by - BookSurge Publishing
This book, intended for research mathematicians, proves the duality theorems that have come to play an increasingly important role in number theory and arithmetic geometry, for example, in the proof of Fermat's Last Theorem.
(13410 views) Pluckings from the tree of Smarandache: Sequences and functions
by - American Research Press
The third book in a series exploring the set of problems called Smarandache Notions. This work delves more deeply into the mathematics of the problems, the level of difficulty here will be somewhat higher than that of the previous books.
(15188 views) Elliptic Curves over Function Fields
by - arXiv
The focus is on elliptic curves over function fields over finite fields. We explain the main classical results on the Birch and Swinnerton-Dyer conjecture in this context and its connection to the Tate conjecture about divisors on surfaces.
(9463 views) On Some of Smarandache's Problems
by - Erhus Univ Pr
A collection of 27 Smarandache's problems which the autor solved by 1999. 22 problems are related to different sequences, 4 problems are proved, modifications of two problems are formulated, and counterexamples to two of the problems are constructed.
(10044 views)