Logo

Introduction to Bimatrices by W. B. V. Kandasamy, F. Smarandache, K. Ilanthenral

Large book cover: Introduction to Bimatrices

Introduction to Bimatrices
by

Publisher: arXiv
ISBN/ASIN: 1931233950
ISBN-13: 9781931233958
Number of pages: 181

Description:
This book introduces the concept of bimatrices, and studies several notions like bieigen values, bieigen vectors, characteristic bipolynomials, bitransformations, bioperators and bidiagonalization. Further, we introduce and explore the concepts like fuzzy bimatrices, neutrosophic bimatrices and fuzzy neutrosophic bimatrices, which will find its application in fuzzy and neutrosophic logic.

Home page url

Download or read it online for free here:
Download link
(610KB, PDF)

Similar books

Book cover: Linear Algebra Examples C-3: The Eigenvalue Problem and Euclidean Vector SpaceLinear Algebra Examples C-3: The Eigenvalue Problem and Euclidean Vector Space
by - BookBoon
The book is a collection of solved problems in linear algebra, this third volume covers the eigenvalue problem and Euclidean vector space. All examples are solved, and the solutions usually consist of step-by-step instructions.
(8510 views)
Book cover: CirculantsCirculants
by
The goal of this book is to describe circulants in an algebraic context. It oscillates between the point of view of circulants as a commutative algebra, and the concrete point of view of circulants as matrices with emphasis on their determinants.
(8719 views)
Book cover: MatricesMatrices
by - University of Illinois at Chicago
From the table of contents: Domains, Modules and Matrices; Canonical Forms for Similarity; Functions of Matrices and Analytic Similarity; Inner product spaces; Elements of Multilinear Algebra; Nonnegative matrices; Convexity.
(8026 views)
Book cover: Random Matrix Theory, Interacting Particle Systems and Integrable SystemsRandom Matrix Theory, Interacting Particle Systems and Integrable Systems
by - Cambridge University Press
Random matrix theory is at the intersection of linear algebra, probability theory and integrable systems, and has a wide range of applications. The book contains articles on random matrix theory such as integrability and free probability theory.
(713 views)