**Introduction to Bimatrices**

by W. B. V. Kandasamy, F. Smarandache, K. Ilanthenral

**Publisher**: arXiv 2005**ISBN/ASIN**: 1931233950**ISBN-13**: 9781931233958**Number of pages**: 181

**Description**:

This book introduces the concept of bimatrices, and studies several notions like bieigen values, bieigen vectors, characteristic bipolynomials, bitransformations, bioperators and bidiagonalization. Further, we introduce and explore the concepts like fuzzy bimatrices, neutrosophic bimatrices and fuzzy neutrosophic bimatrices, which will find its application in fuzzy and neutrosophic logic.

Download or read it online for free here:

**Download link**

(610KB, PDF)

## Similar books

**Linear Algebra Examples C-3: The Eigenvalue Problem and Euclidean Vector Space**

by

**Leif Mejlbro**-

**BookBoon**

The book is a collection of solved problems in linear algebra, this third volume covers the eigenvalue problem and Euclidean vector space. All examples are solved, and the solutions usually consist of step-by-step instructions.

(

**8510**views)

**Circulants**

by

**Alun Wyn-jones**

The goal of this book is to describe circulants in an algebraic context. It oscillates between the point of view of circulants as a commutative algebra, and the concrete point of view of circulants as matrices with emphasis on their determinants.

(

**8719**views)

**Matrices**

by

**Shmuel Friedland**-

**University of Illinois at Chicago**

From the table of contents: Domains, Modules and Matrices; Canonical Forms for Similarity; Functions of Matrices and Analytic Similarity; Inner product spaces; Elements of Multilinear Algebra; Nonnegative matrices; Convexity.

(

**8026**views)

**Random Matrix Theory, Interacting Particle Systems and Integrable Systems**

by

**Percy Deift, Peter Forrester (eds)**-

**Cambridge University Press**

Random matrix theory is at the intersection of linear algebra, probability theory and integrable systems, and has a wide range of applications. The book contains articles on random matrix theory such as integrability and free probability theory.

(

**713**views)