**Introduction to Bimatrices**

by W. B. V. Kandasamy, F. Smarandache, K. Ilanthenral

**Publisher**: arXiv 2005**ISBN/ASIN**: 1931233950**ISBN-13**: 9781931233958**Number of pages**: 181

**Description**:

This book introduces the concept of bimatrices, and studies several notions like bieigen values, bieigen vectors, characteristic bipolynomials, bitransformations, bioperators and bidiagonalization. Further, we introduce and explore the concepts like fuzzy bimatrices, neutrosophic bimatrices and fuzzy neutrosophic bimatrices, which will find its application in fuzzy and neutrosophic logic.

Download or read it online for free here:

**Download link**

(610KB, PDF)

## Similar books

**Random Matrix Theory, Interacting Particle Systems and Integrable Systems**

by

**Percy Deift, Peter Forrester (eds)**-

**Cambridge University Press**

Random matrix theory is at the intersection of linear algebra, probability theory and integrable systems, and has a wide range of applications. The book contains articles on random matrix theory such as integrability and free probability theory.

(

**1274**views)

**Matrix Analysis and Algorithms**

by

**Andrew Stuart, Jochen Voss**-

**CaltechAUTHORS**

An introduction to matrix analysis, and to the basic algorithms of numerical linear algebra. Contents: Vector and Matrix Analysis; Matrix Factorisations; Stability and Conditioning; Complexity of Algorithms; Systems of Linear Equations; etc.

(

**1448**views)

**Toeplitz and Circulant Matrices: A review**

by

**Robert M. Gray**-

**Now Publishers Inc**

The book derives the fundamental theorems on the asymptotic behavior of eigenvalues, inverses, and products of banded Toeplitz matrices and Toeplitz matrices with absolutely summable elements. Written for students and practicing engineers.

(

**10658**views)

**Determinants and Matrices**

by

**R. KochendÃ¶rfer**-

**Teubner**

Basic methods and concepts are introduced. From the table of contents: Preliminaries; Determinants; Matrices; Vector spaces. Rank of a matrix; Linear Spaces; Hermitian/Quadratic forms; More about determinants and matrices; Similarity.

(

**9664**views)