Logo

Introduction to Bimatrices by W. B. V. Kandasamy, F. Smarandache, K. Ilanthenral

Large book cover: Introduction to Bimatrices

Introduction to Bimatrices
by

Publisher: arXiv
ISBN/ASIN: 1931233950
ISBN-13: 9781931233958
Number of pages: 181

Description:
This book introduces the concept of bimatrices, and studies several notions like bieigen values, bieigen vectors, characteristic bipolynomials, bitransformations, bioperators and bidiagonalization. Further, we introduce and explore the concepts like fuzzy bimatrices, neutrosophic bimatrices and fuzzy neutrosophic bimatrices, which will find its application in fuzzy and neutrosophic logic.

Home page url

Download or read it online for free here:
Download link
(610KB, PDF)

Similar books

Book cover: Random Matrix Theory, Interacting Particle Systems and Integrable SystemsRandom Matrix Theory, Interacting Particle Systems and Integrable Systems
by - Cambridge University Press
Random matrix theory is at the intersection of linear algebra, probability theory and integrable systems, and has a wide range of applications. The book contains articles on random matrix theory such as integrability and free probability theory.
(1274 views)
Book cover: Matrix Analysis and AlgorithmsMatrix Analysis and Algorithms
by - CaltechAUTHORS
An introduction to matrix analysis, and to the basic algorithms of numerical linear algebra. Contents: Vector and Matrix Analysis; Matrix Factorisations; Stability and Conditioning; Complexity of Algorithms; Systems of Linear Equations; etc.
(1448 views)
Book cover: Toeplitz and Circulant Matrices: A reviewToeplitz and Circulant Matrices: A review
by - Now Publishers Inc
The book derives the fundamental theorems on the asymptotic behavior of eigenvalues, inverses, and products of banded Toeplitz matrices and Toeplitz matrices with absolutely summable elements. Written for students and practicing engineers.
(10658 views)
Book cover: Determinants and MatricesDeterminants and Matrices
by - Teubner
Basic methods and concepts are introduced. From the table of contents: Preliminaries; Determinants; Matrices; Vector spaces. Rank of a matrix; Linear Spaces; Hermitian/Quadratic forms; More about determinants and matrices; Similarity.
(9664 views)