Logo

Semi-classical analysis by Victor Guillemin, Shlomo Sternberg

Small book cover: Semi-classical analysis

Semi-classical analysis
by

Publisher: Harvard University
Number of pages: 488

Description:
In semi-classical analysis many of the basic results involve asymptotic expansions in which the terms can by computed by symbolic techniques and the focus of these lecture notes will be the 'symbol calculus' that this creates.

Home page url

Download or read it online for free here:
Download link
(1.8MB, PDF)

Similar books

Book cover: Lecture Notes on the Theory of DistributionsLecture Notes on the Theory of Distributions
by - Universitaet Wien
From the table of contents: 1. Test Functions and Distributions; 2. Differentiation, Differential Operators; 3. Basic Constructions; 4. Convolution; 5. Fourier Transform and Temperate Distributions; 6. Regularity; 7. Fundamental Solutions.
(11127 views)
Book cover: Special Functions and Their Symmetries: Postgraduate Course in Applied AnalysisSpecial Functions and Their Symmetries: Postgraduate Course in Applied Analysis
by - University of Leeds
This text presents fundamentals of special functions theory and its applications in partial differential equations of mathematical physics. The course covers topics in harmonic, classical and functional analysis, and combinatorics.
(17017 views)
Book cover: An Introduction to Asymptotic AnalysisAn Introduction to Asymptotic Analysis
by - Heriot-Watt University
From the table of contents: Order notation; Perturbation methods; Asymptotic series; Laplace integrals (Laplace's method, Watson's lemma); Method of stationary phase; Method of steepest descents; Bibliography; Notes; Exam formula sheet; etc.
(8541 views)
Book cover: Jacobi Operators and Complete Integrable Nonlinear LatticesJacobi Operators and Complete Integrable Nonlinear Lattices
by - American Mathematical Society
Introduction and a reference to spectral and inverse spectral theory of Jacobi operators and applications of these theories to the Toda and Kac-van Moerbeke hierarchy. It covers second order difference equations, self-adjoint operators, etc.
(14363 views)