Multivariable Calculus
by Jerry Shurman
Publisher: Reed College 2010
Number of pages: 523
Description:
This is the text for a two-semester multivariable calculus course. The setting is n-dimensional Euclidean space, with the material on differentiation culminating in the Inverse Function Theorem and its consequences, and the material on integration culminating in the Generalized Fundamental Theorem of Integral Calculus (often called Stokes's Theorem) and some of its consequences in turn. The prerequisite is a proof-based course in one-variable calculus.
Download or read it online for free here:
Download link
(6.5MB, PDF)
Similar books

by Michael Corral - Schoolcraft College
A textbok on elementary multivariable calculus, the covered topics: vector algebra, lines, planes, surfaces, vector-valued functions, functions of 2 or 3 variables, partial derivatives, optimization, multiple, line and surface integrals.
(32376 views)

by George Cain, James Herod
The text covers Euclidean three space, vectors, vector functions, derivatives, more dimensions, linear functions and matrices, continuity, the Taylor polynomial, sequences and series, Taylor series, integration, Gauss and Green, Stokes.
(15900 views)

by Kenneth Kuttler - Brigham Young University
This book presents the necessary linear algebra and then uses it as a framework upon which to build multivariable calculus. This is the correct approach, leaving open the possibility that at least some students will understand the topics presented.
(8028 views)

by Paul Dawkins - Lamar University
These lecture notes should be accessible to anyone wanting to learn Calculus III or needing a refresher in some of the topics from the class. The notes assume a working knowledge of limits, derivatives, integration, parametric equations, vectors.
(20793 views)