Logic and Information
by Keith Devlin
Publisher: ESSLLI 2001
ISBN/ASIN: 0521499712
Description:
An introductory, comparative account of three mathematical approaches to information: the classical quantitative theory of Claude Shannon, developed in the 1940s and 50s, a quantitative-based, qualitative theory developed by Fred Dretske in the 1970s, and a qualitative theory introduced by Jon Barwise and John Perry in the early 1980s and pursued by Barwise, Israel, Devlin, Seligman and others in the 1990s.
Download or read it online for free here:
Download link
(multiple PDF files)
Similar books
Entropy and Information Theory
by Robert M. Gray - Springer
The book covers the theory of probabilistic information measures and application to coding theorems for information sources and noisy channels. This is an up-to-date treatment of traditional information theory emphasizing ergodic theory.
(17388 views)
by Robert M. Gray - Springer
The book covers the theory of probabilistic information measures and application to coding theorems for information sources and noisy channels. This is an up-to-date treatment of traditional information theory emphasizing ergodic theory.
(17388 views)
Information and Coding
by Karl Petersen - AMS
The aim is to review the many facets of information, coding, and cryptography, including their uses throughout history and their mathematical underpinnings. Prerequisites included high-school mathematics and willingness to deal with unfamiliar ideas.
(6065 views)
by Karl Petersen - AMS
The aim is to review the many facets of information, coding, and cryptography, including their uses throughout history and their mathematical underpinnings. Prerequisites included high-school mathematics and willingness to deal with unfamiliar ideas.
(6065 views)
Around Kolmogorov Complexity: Basic Notions and Results
by Alexander Shen - arXiv.org
Algorithmic information theory studies description complexity and randomness. This text covers the basic notions of algorithmic information theory: Kolmogorov complexity, Solomonoff universal a priori probability, effective Hausdorff dimension, etc.
(6692 views)
by Alexander Shen - arXiv.org
Algorithmic information theory studies description complexity and randomness. This text covers the basic notions of algorithmic information theory: Kolmogorov complexity, Solomonoff universal a priori probability, effective Hausdorff dimension, etc.
(6692 views)
Information Theory, Inference, and Learning Algorithms
by David J. C. MacKay - Cambridge University Press
A textbook on information theory, Bayesian inference and learning algorithms, useful for undergraduates and postgraduates students, and as a reference for researchers. Essential reading for students of electrical engineering and computer science.
(29526 views)
by David J. C. MacKay - Cambridge University Press
A textbook on information theory, Bayesian inference and learning algorithms, useful for undergraduates and postgraduates students, and as a reference for researchers. Essential reading for students of electrical engineering and computer science.
(29526 views)