Logo

Functors and Categories of Banach Spaces

Large book cover: Functors and Categories of Banach Spaces

Functors and Categories of Banach Spaces
by

Publisher: Springer
ISBN/ASIN: 3540087648
ISBN-13: 9783540087649
Number of pages: 103

Description:
The aim of this book is to develop the theory of Banach operator ideals and metric tensor products along categorical lines: these two classes of mathematical objects are endofunctors on the category Ban of all Banach spaces in a natural way and may easily be characterized among them.

Download or read it online for free here:
Download link
(4.7MB, PDF)

Similar books

Book cover: Hilbert Space Methods for Partial Differential EquationsHilbert Space Methods for Partial Differential Equations
by - Pitman
Written for beginning graduate students of mathematics, engineering, and the physical sciences. It covers elements of Hilbert space, distributions and Sobolev spaces, boundary value problems, first order evolution equations, etc.
(12081 views)
Book cover: Operator Algebras and Quantum Statistical MechanicsOperator Algebras and Quantum Statistical Mechanics
by - Springer
These two volumes present the theory of operator algebras with applications to quantum statistical mechanics. The authors' approach to the operator theory is to a large extent governed by the dictates of the physical applications.
(14307 views)
Book cover: An Introduction to Hilbert Module Approach to Multivariable Operator TheoryAn Introduction to Hilbert Module Approach to Multivariable Operator Theory
by - arXiv
An introduction of Hilbert modules over function algebras. The theory of Hilbert modules is presented as combination of commutative algebra, complex geometry and Hilbert spaces and its applications to the theory of n-tuples of commuting operators.
(4221 views)
Book cover: Jordan Operator AlgebrasJordan Operator Algebras
by - Pitman
Introduction to Jordan algebras of operators on Hilbert spaces and their abstract counterparts. It develops the theory of Jordan operator algebras to a point from which the theory of C*- and von Neumann algebras can be generalized to Jordan algebras.
(10084 views)