**Modern Algebraic Topology**

by D. G. Bourgin

**Publisher**: Macmillan 1963**ISBN/ASIN**: B0006AYEAQ**Number of pages**: 544

**Description**:

Contents: Preliminary algebraic background; Chain relationships; Fundamentals of the absolute homology groups and basic examples; Relative omology modules; Manifolds and fixed cells; Omology exact sequences; Simplicial methods and inverse and direct limits; Gratings; Fundamental omology relations and applications; Homological algebra; Uniqueness proofs and fixed point indices; etc.

Download or read it online for free here:

**Read online**

(online reading)

## Similar books

**Lectures on Etale Cohomology**

by

**J. S. Milne**

These are the notes for a course taught at the University of Michigan in 1989 and 1998. The emphasis is on heuristic arguments rather than formal proofs and on varieties rather than schemes. The notes also discuss the proof of the Weil conjectures.

(

**8108**views)

**The Homology of Iterated Loop Spaces**

by

**F. R. Cohen, T. J. Lada, P. J. May**-

**Springer**

A thorough treatment of homology operations and of their application to the calculation of the homologies of various spaces. The book studies an up to homotopy notion of an algebra over a monad and its role in the theory of iterated loop spaces.

(

**8698**views)

**Introduction to Algebraic Topology and Algebraic Geometry**

by

**U. Bruzzo**

Introduction to algebraic geometry for students with an education in theoretical physics, to help them to master the basic algebraic geometric tools necessary for algebraically integrable systems and the geometry of quantum field and string theory.

(

**9598**views)

**Prerequisites in Algebraic Topology**

by

**Bjorn Ian Dundas**-

**NTNU**

This is not an introductory textbook in algebraic topology, these notes attempt to give an overview of the parts of algebraic topology, and in particular homotopy theory, which are needed in order to appreciate that side of motivic homotopy theory.

(

**9699**views)