**Topics in topology: The signature theorem and some of its applications**

by Liviu I. Nicolaescu

**Publisher**: University of Notre Dame 2008**Number of pages**: 159

**Description**:

The author discusses several exciting topological developments that took place during the fifties decade which radically changed the way we think about many issues. Topics covered: Poincare duality, Thom isomorphism, Euler, Chern and Pontryagin classes, cobordisms groups, signature formula.

Download or read it online for free here:

**Download link**

(1MB, PDF)

## Similar books

**Homotopy Theories and Model Categories**

by

**W. G. Dwyer, J. Spalinski**-

**University of Notre Dame**

This paper is an introduction to the theory of model categories. The prerequisites needed for understanding this text are some familiarity with CW-complexes, chain complexes, and the basic terminology associated with categories.

(

**9326**views)

**A Primer on Homotopy Colimits**

by

**Daniel Dugger**-

**University of Oregon**

This is an expository paper on homotopy colimits and homotopy limits. These are constructions which should arguably be in the toolkit of every modern algebraic topologist. Many proofs are avoided, or perhaps just sketched.

(

**9976**views)

**scl**

by

**Danny Calegari**-

**Mathematical Society of Japan**

This is a comprehensive introduction to the theory of stable commutator length, an important subfield of quantitative topology, with substantial connections to 2-manifolds, dynamics, geometric group theory, bounded cohomology, symplectic topology.

(

**10407**views)

**Notes on the course Algebraic Topology**

by

**Boris Botvinnik**-

**University of Oregon**

Contents: Important examples of topological spaces; Constructions; Homotopy and homotopy equivalence; CW-complexes and homotopy; Fundamental group; Covering spaces; Higher homotopy groups; Fiber bundles; Suspension Theorem and Whitehead product; etc.

(

**10231**views)