**Tensor Analysis**

by Edward Nelson

**Publisher**: Princeton Univ Pr 1974**ISBN/ASIN**: 0691080461**ISBN-13**: 9780691080468**Number of pages**: 138

**Description**:

These are the lecture notes for the first part of a one-term course on differential geometry given at Princeton in the spring of 1967. They are an expository account of the formal algebraic aspects of tensor analysis using both modern and classical notations.

Download or read it online for free here:

**Download link**

(3.2MB, PDF)

## Similar books

**Differential Geometry: A First Course in Curves and Surfaces**

by

**Theodore Shifrin**-

**University of Georgia**

Contents: Curves (Examples, Arclength Parametrization, Frenet Frame); Surfaces: Local Theory (Parametrized Surfaces, Gauss Map, Covariant Differentiation, Parallel Translation, Geodesics); Surfaces: Further Topics (Holonomy, Hyperbolic Geometry,...).

(

**5780**views)

**A Course Of Differential Geometry**

by

**John Edward Campbell**-

**Clarendon Press**

Contents: Tensor theory; The ground form when n=2; Geodesics in two-way space; Two-way space as a locus in Euclidean space; Deformation of a surface and congruences; Curves in Euclidean space and on a surface; The ruled surface; Minimal surface; etc.

(

**4626**views)

**Course of Differential Geometry**

by

**Ruslan Sharipov**-

**Samizdat Press**

Textbook for the first course of differential geometry. It covers the theory of curves in three-dimensional Euclidean space, the vectorial analysis both in Cartesian and curvilinear coordinates, and the theory of surfaces in the space E.

(

**13777**views)

**Differential Geometry: A Geometric Introduction**

by

**David W. Henderson**-

**Project Euclid**

This is the only book that introduces differential geometry through a combination of an intuitive geometric foundation, a rigorous connection with the standard formalisms, computer exercises with Maple, and a problems-based approach.

(

**2604**views)