Tensor Analysis
by Edward Nelson
Publisher: Princeton Univ Pr 1974
ISBN/ASIN: 0691080461
ISBN-13: 9780691080468
Number of pages: 138
Description:
These are the lecture notes for the first part of a one-term course on differential geometry given at Princeton in the spring of 1967. They are an expository account of the formal algebraic aspects of tensor analysis using both modern and classical notations.
Download or read it online for free here:
Download link
(3.2MB, PDF)
Similar books
Course of Differential Geometry
by Ruslan Sharipov - Samizdat Press
Textbook for the first course of differential geometry. It covers the theory of curves in three-dimensional Euclidean space, the vectorial analysis both in Cartesian and curvilinear coordinates, and the theory of surfaces in the space E.
(16875 views)
by Ruslan Sharipov - Samizdat Press
Textbook for the first course of differential geometry. It covers the theory of curves in three-dimensional Euclidean space, the vectorial analysis both in Cartesian and curvilinear coordinates, and the theory of surfaces in the space E.
(16875 views)
Differential Geometry: A Geometric Introduction
by David W. Henderson - Project Euclid
This is the only book that introduces differential geometry through a combination of an intuitive geometric foundation, a rigorous connection with the standard formalisms, computer exercises with Maple, and a problems-based approach.
(6508 views)
by David W. Henderson - Project Euclid
This is the only book that introduces differential geometry through a combination of an intuitive geometric foundation, a rigorous connection with the standard formalisms, computer exercises with Maple, and a problems-based approach.
(6508 views)
Differential Geometry Of Three Dimensions
by C.E. Weatherburn - Cambridge University Press
The book is devoted to differential invariants for a surface and their applications. By the use of vector methods the presentation is both simplified and condensed, and students are encouraged to reason geometrically rather than analytically.
(10765 views)
by C.E. Weatherburn - Cambridge University Press
The book is devoted to differential invariants for a surface and their applications. By the use of vector methods the presentation is both simplified and condensed, and students are encouraged to reason geometrically rather than analytically.
(10765 views)
Differential Geometry Course Notes
by Richard Koch - University of Oregon
These are differential geometry course notes. From the table of contents: Preface; Curves; Surfaces; Extrinsic Theory; The Covariant Derivative; The Theorema Egregium; The Gauss-Bonnet Theorem; Riemann's Counting Argument.
(12595 views)
by Richard Koch - University of Oregon
These are differential geometry course notes. From the table of contents: Preface; Curves; Surfaces; Extrinsic Theory; The Covariant Derivative; The Theorema Egregium; The Gauss-Bonnet Theorem; Riemann's Counting Argument.
(12595 views)