Course of Differential Geometry
by Ruslan Sharipov
Publisher: Samizdat Press 2004
ISBN/ASIN: 5747701290
Number of pages: 132
Description:
This book is a textbook for the basic course of differential geometry. It is recommended as an introductory material for this subject. The book is devoted to the firs acquaintance with the differential geometry. Therefore it begins with the theory of curves in three-dimensional Euclidean space E. Then the vectorial analysis in E is stated both in Cartesian and curvilinear coordinates, afterward the theory of surfaces in the space E is considered.
Download or read it online for free here:
Download link
(1MB, PDF)
Similar books

by Dmitri Zaitsev - Trinity College Dublin
From the table of contents: Chapter 1. Introduction to Smooth Manifolds; Chapter 2. Basic results from Differential Topology; Chapter 3. Tangent spaces and tensor calculus; Tensors and differential forms; Chapter 4. Riemannian geometry.
(12530 views)

by Stefan Waner
Smooth manifolds and scalar fields, tangent vectors, contravariant and covariant vector fields, tensor fields, Riemannian manifolds, locally Minkowskian manifolds, covariant differentiation, the Riemann curvature tensor, premises of general relativity.
(24045 views)

by Gilbert Weinstein - UAB
These notes are for a beginning graduate level course in differential geometry. It is assumed that this is the students' first course in the subject. Thus the choice of subjects and presentation has been made to facilitate a concrete picture.
(14874 views)

by Richard Koch - University of Oregon
These are differential geometry course notes. From the table of contents: Preface; Curves; Surfaces; Extrinsic Theory; The Covariant Derivative; The Theorema Egregium; The Gauss-Bonnet Theorem; Riemann's Counting Argument.
(13305 views)