Logo

Course of Differential Geometry

Small book cover: Course of Differential Geometry

Course of Differential Geometry
by

Publisher: Samizdat Press
ISBN/ASIN: 5747701290
Number of pages: 132

Description:
This book is a textbook for the basic course of differential geometry. It is recommended as an introductory material for this subject. The book is devoted to the firs acquaintance with the differential geometry. Therefore it begins with the theory of curves in three-dimensional Euclidean space E. Then the vectorial analysis in E is stated both in Cartesian and curvilinear coordinates, afterward the theory of surfaces in the space E is considered.

Home page url

Download or read it online for free here:
Download link
(1MB, PDF)

Similar books

Book cover: Elementary Differential GeometryElementary Differential Geometry
by - UAB
These notes are for a beginning graduate level course in differential geometry. It is assumed that this is the students' first course in the subject. Thus the choice of subjects and presentation has been made to facilitate a concrete picture.
(14176 views)
Book cover: Differential Geometry: A Geometric IntroductionDifferential Geometry: A Geometric Introduction
by - Project Euclid
This is the only book that introduces differential geometry through a combination of an intuitive geometric foundation, a rigorous connection with the standard formalisms, computer exercises with Maple, and a problems-based approach.
(6377 views)
Book cover: Differential Geometry Of Three DimensionsDifferential Geometry Of Three Dimensions
by - Cambridge University Press
The book is devoted to differential invariants for a surface and their applications. By the use of vector methods the presentation is both simplified and condensed, and students are encouraged to reason geometrically rather than analytically.
(10669 views)
Book cover: A Course Of Differential GeometryA Course Of Differential Geometry
by - Clarendon Press
Contents: Tensor theory; The ground form when n=2; Geodesics in two-way space; Two-way space as a locus in Euclidean space; Deformation of a surface and congruences; Curves in Euclidean space and on a surface; The ruled surface; Minimal surface; etc.
(7495 views)