**Symplectic, Poisson, and Noncommutative Geometry**

by Tohru Eguchi, et al.

**Publisher**: Cambridge University Press 2014**ISBN-13**: 9781107056411**Number of pages**: 290

**Description**:

Symplectic geometry has its origin in physics, but has flourished as an independent subject in mathematics, together with its offspring, symplectic topology. Symplectic methods have even been applied back to mathematical physics; for example, Floer theory has contributed new insights to quantum field theory.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Lecture Notes on Embedded Contact Homology**

by

**Michael Hutchings**-

**arXiv**

These notes give an introduction to embedded contact homology (ECH) of contact three-manifolds, gathering many basic notions which are scattered across a number of papers. We also discuss the origins of ECH, including various remarks and examples.

(

**7684**views)

**Introduction to Symplectic Field Theory**

by

**Y. Eliashberg, A. Givental, H. Hofer**-

**arXiv**

We sketch in this article a new theory, which we call Symplectic Field Theory or SFT, which provides an approach to Gromov-Witten invariants of symplectic manifolds and their Lagrangian submanifolds in the spirit of topological field theory.

(

**12899**views)

**Introduction to Symplectic and Hamiltonian Geometry**

by

**Ana Cannas da Silva**

The text covers foundations of symplectic geometry in a modern language. It describes symplectic manifolds and their transformations, and explains connections to topology and other geometries. It also covers hamiltonian fields and hamiltonian actions.

(

**14704**views)

**Symplectic Geometry**

by

**Ana Cannas da Silva**-

**Princeton University**

An overview of symplectic geometry – the geometry of symplectic manifolds. From a language of classical mechanics, symplectic geometry became a central branch of differential geometry and topology. This survey gives a partial flavor on this field.

(

**12898**views)