Logo

Lecture Notes on Embedded Contact Homology

Small book cover: Lecture Notes on Embedded Contact Homology

Lecture Notes on Embedded Contact Homology
by

Publisher: arXiv
Number of pages: 88

Description:
These notes give an introduction to embedded contact homology (ECH) of contact three-manifolds, gathering together many basic notions which are scattered across a number of papers. We also discuss the origins of ECH, including various remarks and examples which have not been previously published. Finally, we review the recent application to four-dimensional symplectic embedding problems.

Home page url

Download or read it online for free here:
Download link
(750KB, PDF)

Similar books

Book cover: Lectures on Symplectic GeometryLectures on Symplectic Geometry
by - Springer
An introduction to symplectic geometry and topology, it provides a useful and effective synopsis of the basics of symplectic geometry and serves as the springboard for a prospective researcher. The text is written in a clear, easy-to-follow style.
(15249 views)
Book cover: Contact GeometryContact Geometry
by - arXiv
This is an introductory text on the more topological aspects of contact geometry. After discussing some of the fundamental results of contact topology, I move on to a detailed exposition of the original proof of the Lutz-Martinet theorem.
(11847 views)
Book cover: Symplectic, Poisson, and Noncommutative GeometrySymplectic, Poisson, and Noncommutative Geometry
by - Cambridge University Press
Symplectic geometry has its origin in physics, but has flourished as an independent subject in mathematics, together with its offspring, symplectic topology. Symplectic methods have even been applied back to mathematical physics ...
(4859 views)
Book cover: Introduction to Symplectic Field TheoryIntroduction to Symplectic Field Theory
by - arXiv
We sketch in this article a new theory, which we call Symplectic Field Theory or SFT, which provides an approach to Gromov-Witten invariants of symplectic manifolds and their Lagrangian submanifolds in the spirit of topological field theory.
(12977 views)