**Non-Uniform Random Variate Generation**

by Luc Devroye

**Publisher**: Springer 1986**ISBN/ASIN**: 0387963057**ISBN-13**: 9780387963051**Number of pages**: 843

**Description**:

This text is about one small field on the crossroads of statistics, operations research and computer science. Statisticians need random number generators to test and compare estimators before using them in real life. In operations research, random numbers are a key component in large scale simulations. Computer scientists need randomness in program testing, game playing and comparisons of algorithms.

Download or read it online for free here:

**Download link**

(37MB, ZIP/PDF)

Download mirrors:**Mirror 1**

## Similar books

**Think Stats: Probability and Statistics for Programmers**

by

**Allen B. Downey**-

**Green Tea Press**

Think Stats is an introduction to Probability and Statistics for Python programmers. This new book emphasizes simple techniques you can use to explore real data sets and answer interesting statistical questions. Basic skills in Python are assumed.

(

**23113**views)

**Markov Chains and Stochastic Stability**

by

**S.P. Meyn, R.L. Tweedie**-

**Springer**

The book on the theory of general state space Markov chains, and its application to time series analysis, operations research and systems and control theory. An advanced graduate text and a monograph treating the stability of Markov chains.

(

**22024**views)

**Lectures on Stochastic Analysis**

by

**Thomas G. Kurtz**-

**University of Wisconsin**

Covered topics: stochastic integrals with respect to general semimartingales, stochastic differential equations based on these integrals, integration with respect to Poisson measures, stochastic differential equations for general Markov processes.

(

**14468**views)

**A defense of Columbo: A multilevel introduction to probabilistic reasoning**

by

**G. D'Agostini**-

**arXiv**

Triggered by a recent interesting article on the too frequent incorrect use of probabilistic evidence in courts, the author introduces the basic concepts of probabilistic inference with a toy model, and discusses several important issues.

(

**17001**views)