**Inverse Problem Theory and Methods for Model Parameter Estimation**

by Albert Tarantola

**Publisher**: SIAM 2004**ISBN/ASIN**: 0898715725**ISBN-13**: 9780898715729**Number of pages**: 358

**Description**:

The first part of the book deals exclusively with discrete inverse problems with a finite number of parameters, while the second part of the book deals with general inverse problems. The book is directed to all scientists, including applied mathematicians, facing the problem of quantitative interpretation of experimental data in fields such as physics, chemistry, biology, image processing, and information sciences. Considerable effort has been made so that this book can serve either as a reference manual for researchers or as a textbook in a course for undergraduate or graduate students.

Download or read it online for free here:

**Download link**

(20MB, PDF)

## Similar books

**Principles of Data Analysis**

by

**Cappella Archive**-

**Prasenjit Saha**

This is a short book about the principles of data analysis. The emphasis is on why things are done rather than on exactly how to do them. If you already know something about the subject, then working through this book will deepen your understanding.

(

**12852**views)

**Bayesian Spectrum Analysis and Parameter Estimation**

by

**G. Larry Bretthorst**-

**Springer**

This work is a research document on the application of probability theory to the parameter estimation problem. The people who will be interested in this material are physicists, economists, and engineers who have to deal with data on a daily basis.

(

**15804**views)

**Correlation and Causality**

by

**David A. Kenny**-

**John Wiley & Sons Inc**

This text is a general introduction to the topic of structural analysis. It presumes no previous acquaintance with causal analysis. It is general because it covers all the standard, as well as a few nonstandard, statistical procedures.

(

**14714**views)

**Introduction to Randomness and Statistics**

by

**Alexander K. Hartmann**-

**arXiv**

This is a practical introduction to randomness and data analysis, in particular in the context of computer simulations. At the beginning, the most basics concepts of probability are given, in particular discrete and continuous random variables.

(

**12478**views)