**Linear algebra via exterior products**

by Sergei Winitzki

**Publisher**: Ludwig-Maximilians University 2009**Number of pages**: 82

**Description**:

A pedagogical introduction to the coordinate-free approach in basic finite-dimensional linear algebra. The reader should be already exposed to the elementary array-based formalism of vector and matrix calculations. In this book, the author makes extensive use of the exterior product of vectors. He shows how the standard properties of determinants, the Liouville formula, the Hamilton-Cayley theorem, and Pfaffians, as well as some results concerning eigenspace projectors can be derived without cumbersome matrix calculations.

Download or read it online for free here:

**Download link**

(1.6MB, PDF)

## Similar books

**Lectures on Linear Algebra and Matrices**

by

**G. Donald Allen**-

**Texas A&M University**

Contents: Vectors and Vector Spaces; Matrices and Linear Algebra; Eigenvalues and Eigenvectors; Unitary Matrices; Hermitian Theory; Normal Matrices; Factorization Theorems; Jordan Normal Form; Hermitian and Symmetric Matrices; Nonnegative Matrices.

(

**15057**views)

**Linear Algebra C-2: Geometrical Vectors, Vector Spaces and Linear Maps**

by

**Leif Mejlbro**-

**BookBoon**

The book is a collection of solved problems in linear algebra. The second volume covers geometrical vectors, vector spaces and linear maps. All examples are solved, and the solutions usually consist of step-by-step instructions.

(

**14960**views)

**n-Linear Algebra of Type II**

by

**W. B. V. Kandasamy, F. Smarandache**-

**InfoLearnQuest**

This book is a continuation of the book n-linear algebra of type I. Most of the properties that could not be derived or defined for n-linear algebra of type I is made possible in this new structure which is introduced in this book.

(

**12350**views)

**Introduction to Vectors and Tensors Volume 1: Linear and Multilinear Algebra**

by

**Ray M. Bowen, C.-C.Wang**-

**Springer**

This book presents the basics of vector and tensor analysis for science and engineering students. Volume 1 covers algebraic structures and a modern introduction to the algebra of vectors and tensors. Clear presentation of mathematical concepts.

(

**19489**views)