**CDBooK: Introduction to Vassiliev Knot invariants**

by S.Chmutov, S.Duzhin, J.Mostovoy

**Publisher**: Ohio State Universit 2009**Number of pages**: 460

**Description**:

This text provides an introduction to the theory of finite type (Vassiliev) knot invariants, with a stress on its combinatorial aspects. It is intended for readers with no or little background in this area, and we care more about a clear explanation of the basic notions and constructions than about widening the exposition to more recent and more advanced material.

Download or read it online for free here:

**Download link**

(6.7MB, PDF)

## Similar books

**Surgical Methods in Rigidity**

by

**F.T. Farrell**-

**Springer**

This book is an introduction to the topological rigidity theorem for compact non-positively curved Riemannian manifolds. It contains a quick informal account of the background material from surgery theory and controlled topology prerequesite.

(

**6716**views)

**Exotic Homology Manifolds**

by

**Frank Quinn, Andrew Ranicki**

Homology manifolds were developed in the 20th century to give a precise setting for Poincare's ideas on duality. They are investigated using algebraic and geometric methods. This volume is the proceedings of a workshop held in 2003.

(

**8211**views)

**Lectures on Polyhedral Topology**

by

**John R. Stallings**-

**Tata Institute of Fundamental Research**

These notes contain: The elementary theory of finite polyhedra in real vector spaces; A theory of 'general position' (approximation of maps), based on 'non-degeneracy'. A theory of 'regular neighbourhoods' in arbitrary polyhedra; etc.

(

**8081**views)

**Ends of Complexes**

by

**Bruce Hughes, Andrew Ranicki**-

**Cambridge University Press**

The book gathers together the main strands of the theory of ends of manifolds from the last thirty years and presents a unified and coherent treatment of them. It also contains authoritative expositions of mapping tori and telescopes.

(

**8397**views)