Manifolds of Differentiable Mappings
by Peter W. Michor
Publisher: Birkhauser 1980
ISBN/ASIN: 0906812038
ISBN-13: 9780906812037
Number of pages: 165
Description:
This book is devoted to the theory of manifolds of differentiable mappings and contains result which can be proved without the help of a hard implicit function theorem of nuclear function spaces. All the necessary background is developed in detail.
Download or read it online for free here:
Download link
(15MB, PDF)
Similar books

by Hansjoerg Geiges - arXiv
This is an introductory text on the more topological aspects of contact geometry. After discussing some of the fundamental results of contact topology, I move on to a detailed exposition of the original proof of the Lutz-Martinet theorem.
(11036 views)

by Jie Wu - National University of Singapore
Contents: Tangent Spaces, Vector Fields in Rn and the Inverse Mapping Theorem; Topological and Differentiable Manifolds, Diffeomorphisms, Immersions, Submersions and Submanifolds; Examples of Manifolds; Fibre Bundles and Vector Bundles; etc.
(11657 views)

by Ana Cannas da Silva - Springer
An introduction to symplectic geometry and topology, it provides a useful and effective synopsis of the basics of symplectic geometry and serves as the springboard for a prospective researcher. The text is written in a clear, easy-to-follow style.
(14430 views)

by Dirk Schuetz - University of Sheffield
These notes describe basic material about smooth manifolds (vector fields, flows, tangent bundle, partitions of unity, Whitney embedding theorem, foliations, etc...), introduction to Morse theory, and various applications.
(10395 views)