**Manifolds of Differentiable Mappings**

by Peter W. Michor

**Publisher**: Birkhauser 1980**ISBN/ASIN**: 0906812038**ISBN-13**: 9780906812037**Number of pages**: 165

**Description**:

This book is devoted to the theory of manifolds of differentiable mappings and contains result which can be proved without the help of a hard implicit function theorem of nuclear function spaces. All the necessary background is developed in detail.

Download or read it online for free here:

**Download link**

(15MB, PDF)

## Similar books

**Contact Geometry**

by

**Hansjoerg Geiges**-

**arXiv**

This is an introductory text on the more topological aspects of contact geometry. After discussing some of the fundamental results of contact topology, I move on to a detailed exposition of the original proof of the Lutz-Martinet theorem.

(

**11036**views)

**Lecture Notes on Differentiable Manifolds**

by

**Jie Wu**-

**National University of Singapore**

Contents: Tangent Spaces, Vector Fields in Rn and the Inverse Mapping Theorem; Topological and Differentiable Manifolds, Diffeomorphisms, Immersions, Submersions and Submanifolds; Examples of Manifolds; Fibre Bundles and Vector Bundles; etc.

(

**11657**views)

**Lectures on Symplectic Geometry**

by

**Ana Cannas da Silva**-

**Springer**

An introduction to symplectic geometry and topology, it provides a useful and effective synopsis of the basics of symplectic geometry and serves as the springboard for a prospective researcher. The text is written in a clear, easy-to-follow style.

(

**14430**views)

**Differential Topology and Morse Theory**

by

**Dirk Schuetz**-

**University of Sheffield**

These notes describe basic material about smooth manifolds (vector fields, flows, tangent bundle, partitions of unity, Whitney embedding theorem, foliations, etc...), introduction to Morse theory, and various applications.

(

**10395**views)