Logo

Reversible Markov Chains and Random Walks on Graphs

Reversible Markov Chains and Random Walks on Graphs
by

Publisher: University of California, Berkeley
Number of pages: 516

Description:
From the table of contents: General Markov Chains; Reversible Markov Chains; Hitting and Convergence Time, and Flow Rate, Parameters for Reversible Markov Chains; Special Graphs and Trees; Cover Times; Symmetric Graphs and Chains; Advanced L2 Techniques for Bounding Mixing Times; Some Graph Theory and Randomized Algorithms; Continuous State, Infinite State and Random Environment; Interacting Particles on Finite Graphs; Markov Chain Monte Carlo.

Home page url

Download or read it online for free here:
Download link
(1.8MB, PDF)

Similar books

Book cover: Random Matrix Models and Their ApplicationsRandom Matrix Models and Their Applications
by - Cambridge University Press
The book covers broad areas such as topologic and combinatorial aspects of random matrix theory; scaling limits, universalities and phase transitions in matrix models; universalities for random polynomials; and applications to integrable systems.
(13479 views)
Book cover: A defense of Columbo: A multilevel introduction to probabilistic reasoningA defense of Columbo: A multilevel introduction to probabilistic reasoning
by - arXiv
Triggered by a recent interesting article on the too frequent incorrect use of probabilistic evidence in courts, the author introduces the basic concepts of probabilistic inference with a toy model, and discusses several important issues.
(13283 views)
Book cover: Stochastic Integration and Stochastic Differential EquationsStochastic Integration and Stochastic Differential Equations
by - University of Texas
Written for graduate students of mathematics, physics, electrical engineering, and finance. The students are expected to know the basics of point set topology up to Tychonoff's theorem, general integration theory, and some functional analysis.
(11522 views)
Book cover: Bayesian Field TheoryBayesian Field Theory
by - arXiv.org
A particular Bayesian field theory is defined by combining a likelihood model, providing a probabilistic description of the measurement process, and a prior model, providing the information necessary to generalize from training to non-training data.
(3713 views)