Theory of Functions of a Real Variable
by Shlomo Sternberg
2005
Number of pages: 393
Description:
I have taught the beginning graduate course in real variables and functional analysis three times in the last five years, and this book is the result. The course assumes that the student has seen the basics of real variable theory and point set topology. Contents: the topology of metric spaces, Hilbert spaces and compact operators, the Fourier transform, measure theory, the Lebesgue integral, the Daniell integral, Wiener measure, Brownian motion and white noise, Haar measure, Banach algebras and the spectral theorem, Stone’s theorem, scattering theory.
Download or read it online for free here:
Download link
(1.5MB, PDF)
Similar books

by Arthur Latham Baker - John Wiley & Sons
The author used only such methods as are familiar to the ordinary student of Calculus, avoiding those methods of discussion dependent upon the properties of double periodicity, and also those depending upon Functions of Complex Variables.
(13644 views)

by W W L Chen - Macquarie University
Set of notes suitable for an introduction to the basic ideas in analysis: the number system, sequences and limits, series, functions and continuity, differentiation, the Riemann integral, further treatment of limits, and uniform convergence.
(18266 views)

by B. Lafferriere, G. Lafferriere, N. Mau Nam - Portland State University Library
We provide students with a strong foundation in mathematical analysis. Students should be familiar with most of the concepts presented here after completing the calculus sequence. However, these concepts will be reinforced through rigorous proofs.
(10857 views)

by Larry Clifton - arXiv
This is a detailed introduction to the real number system from a categorical perspective. We begin with the categorical definition of the natural numbers, review the Eudoxus theory of ratios, and then define the positive real numbers categorically.
(8986 views)