Logo

Theory of Functions of a Real Variable

Large book cover: Theory of Functions of a Real Variable

Theory of Functions of a Real Variable
by


Number of pages: 393

Description:
I have taught the beginning graduate course in real variables and functional analysis three times in the last five years, and this book is the result. The course assumes that the student has seen the basics of real variable theory and point set topology. Contents: the topology of metric spaces, Hilbert spaces and compact operators, the Fourier transform, measure theory, the Lebesgue integral, the Daniell integral, Wiener measure, Brownian motion and white noise, Haar measure, Banach algebras and the spectral theorem, Stone’s theorem, scattering theory.

Download or read it online for free here:
Download link
(1.5MB, PDF)

Similar books

Book cover: An Introduction to Real AnalysisAn Introduction to Real Analysis
by - University of California Davis
These are some notes on introductory real analysis. They cover the properties of the real numbers, sequences and series of real numbers, limits of functions, continuity, differentiability, sequences and series of functions, and Riemann integration.
(8500 views)
Book cover: The Theory Of IntegrationThe Theory Of Integration
by - Cambridge University Press
On the one hand, practically no knowledge is assumed; on the other hand, the ideas of Cauchy, Riemann, Darboux, Weierstrass, familiar to the reader who is acquainted with the elementary theory, are used as much as possible ...
(5913 views)
Book cover: Basic Analysis: Introduction to Real AnalysisBasic Analysis: Introduction to Real Analysis
by - Lulu.com
This is a free online textbook for a first course in mathematical analysis. The text covers the real number system, sequences and series, continuous functions, the derivative, the Riemann integral, and sequences of functions.
(20437 views)
Book cover: How We Got From There to Here: A Story of Real AnalysisHow We Got From There to Here: A Story of Real Analysis
by - Open SUNY Textbooks
This book covers the major topics typically addressed in an introductory undergraduate course in real analysis in their historical order. The book provides guidance for transforming an intuitive understanding into rigorous mathematical arguments.
(8310 views)