**Introduction to Quantum Integrability**

by A. Doikou, S. Evangelisti, G. Feverati, N. Karaiskos

**Publisher**: arXiv 2010**Number of pages**: 56

**Description**:

The authors review the basic concepts regarding quantum integrability. Special emphasis is given on the algebraic content of integrable models. The associated algebras are essentially described by the Yang-Baxter and boundary Yang-Baxter equations depending on the choice of boundary conditions.

Download or read it online for free here:

**Download link**

(390KB, PDF)

## Similar books

**Three Lectures on Complexity and Black Holes**

by

**Leonard Susskind**-

**arXiv.org**

The first lecture describes the meaning of quantum complexity, the analogy between entropy and complexity, and the second law of complexity. Lecture two reviews the connection between the second law of complexity and the interior of black holes...

(

**3316**views)

**Random Matrices**

by

**B. Eynard**-

**arXiv.org**

This is an introductory course about random matrices. These notes will give the reader a smell of that fascinating tool for physicists and mathematicians that are Random Matrices, and they can give the envy to learn and search more.

(

**9246**views)

**Lectures on Diffusion Problems and Partial Differential Equations**

by

**S.R.S. Varadhan**-

**Tata Institute of Fundamental Research**

Starting from Brownian Motion, the lectures quickly got into the areas of Stochastic Differential Equations and Diffusion Theory. The section on Martingales is based on additional lectures given by K. Ramamurthy of the Indian Institute of Science.

(

**8149**views)

**A Mathematics Primer for Physics Graduate Students**

by

**Andrew E. Blechman**

The author summarizes most of the more advanced mathematical trickery seen in electrodynamics and quantum mechanics in simple and friendly terms with examples. Mathematical tools such as tensors or differential forms are covered in this text.

(

**22418**views)