Introduction to Quantum Integrability
by A. Doikou, S. Evangelisti, G. Feverati, N. Karaiskos
Publisher: arXiv 2010
Number of pages: 56
Description:
The authors review the basic concepts regarding quantum integrability. Special emphasis is given on the algebraic content of integrable models. The associated algebras are essentially described by the Yang-Baxter and boundary Yang-Baxter equations depending on the choice of boundary conditions.
Download or read it online for free here:
Download link
(390KB, PDF)
Similar books

by C.L. Siegel - Tata Institute of Fundamental Research
From the table of contents: The differential equations of mechanics; The three-body problem : simple collisions (The n-body problem); The three-body problem: general collision (Stability theory of solutions of differential equations).
(8469 views)

by Solomon I. Khmelnik - MiC
In this book we formulate and prove the variational extremum principle for viscous incompressible and compressible fluid, from which principle follows that the Navier-Stokes equations represent the extremum conditions of a certain functional.
(9522 views)

by Nicolas Raymond - arXiv
'Little Magnetic Book' is devoted to the spectral analysis of the magnetic Laplacian in various geometric situations. In particular the influence of the geometry on the discrete spectrum is analysed in many asymptotic regimes.
(6000 views)

by S.R.S. Varadhan - Tata Institute of Fundamental Research
Starting from Brownian Motion, the lectures quickly got into the areas of Stochastic Differential Equations and Diffusion Theory. The section on Martingales is based on additional lectures given by K. Ramamurthy of the Indian Institute of Science.
(8619 views)