Logo

Foliations and the Geometry of 3-manifolds

Large book cover: Foliations and the Geometry of 3-manifolds

Foliations and the Geometry of 3-manifolds
by

Publisher: Oxford University Press
ISBN/ASIN: 0198570082
ISBN-13: 9780198570080
Number of pages: 371

Description:
The purpose of this book is to give an exposition of the "pseudo-Anosov" theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms, and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions.

Home page url

Download or read it online for free here:
Download link
(3.9MB, PDF)

Similar books

Book cover: An Introduction to High Dimensional KnotsAn Introduction to High Dimensional Knots
by - arXiv
This is an introductory article on high dimensional knots for the beginners. Is there a nontrivial high dimensional knot? We first answer this question. We explain local moves on high dimensional knots and the projections of high dimensional knots.
(6346 views)
Book cover: Four-manifolds, Geometries and KnotsFour-manifolds, Geometries and Knots
by - arXiv
The goal of the book is to characterize algebraically the closed 4-manifolds that fibre nontrivially or admit geometries in the sense of Thurston, or which are obtained by surgery on 2-knots, and to provide a reference for the topology of such knots.
(11610 views)
Book cover: An Introduction to Algebraic SurgeryAn Introduction to Algebraic Surgery
by - arXiv
Browder-Novikov-Sullivan-Wall surgery theory investigates the homotopy types of manifolds, using a combination of algebra and topology. It is the aim of these notes to provide an introduction to the more algebraic aspects of the theory.
(10588 views)
Book cover: Notes on Basic 3-Manifold TopologyNotes on Basic 3-Manifold Topology
by
These pages are really just an early draft of the initial chapters of a real book on 3-manifolds. The text does contain a few things that aren't readily available elsewhere, like the Jaco-Shalen/Johannson torus decomposition theorem.
(9980 views)