**Foliations and the Geometry of 3-manifolds**

by Danny Calegari

**Publisher**: Oxford University Press 2007**ISBN/ASIN**: 0198570082**ISBN-13**: 9780198570080**Number of pages**: 371

**Description**:

The purpose of this book is to give an exposition of the "pseudo-Anosov" theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms, and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions.

Download or read it online for free here:

**Download link**

(3.9MB, PDF)

## Similar books

**An Introduction to High Dimensional Knots**

by

**Eiji Ogasa**-

**arXiv**

This is an introductory article on high dimensional knots for the beginners. Is there a nontrivial high dimensional knot? We first answer this question. We explain local moves on high dimensional knots and the projections of high dimensional knots.

(

**6346**views)

**Four-manifolds, Geometries and Knots**

by

**Jonathan Hillman**-

**arXiv**

The goal of the book is to characterize algebraically the closed 4-manifolds that fibre nontrivially or admit geometries in the sense of Thurston, or which are obtained by surgery on 2-knots, and to provide a reference for the topology of such knots.

(

**11610**views)

**An Introduction to Algebraic Surgery**

by

**Andrew Ranicki**-

**arXiv**

Browder-Novikov-Sullivan-Wall surgery theory investigates the homotopy types of manifolds, using a combination of algebra and topology. It is the aim of these notes to provide an introduction to the more algebraic aspects of the theory.

(

**10588**views)

**Notes on Basic 3-Manifold Topology**

by

**Allen Hatcher**

These pages are really just an early draft of the initial chapters of a real book on 3-manifolds. The text does contain a few things that aren't readily available elsewhere, like the Jaco-Shalen/Johannson torus decomposition theorem.

(

**9980**views)