Logo

Foliations and the Geometry of 3-manifolds

Large book cover: Foliations and the Geometry of 3-manifolds

Foliations and the Geometry of 3-manifolds
by

Publisher: Oxford University Press
ISBN/ASIN: 0198570082
ISBN-13: 9780198570080
Number of pages: 371

Description:
The purpose of this book is to give an exposition of the "pseudo-Anosov" theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms, and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions.

Home page url

Download or read it online for free here:
Download link
(3.9MB, PDF)

Similar books

Book cover: The Geometry and Topology of Three-ManifoldsThe Geometry and Topology of Three-Manifolds
by - Mathematical Sciences Research Institute
The text describes the connection between geometry and lowdimensional topology, it is useful to graduate students and mathematicians working in related fields, particularly 3-manifolds and Kleinian groups. Much of the material or technique is new.
(17053 views)
Book cover: High-dimensional Knot TheoryHigh-dimensional Knot Theory
by - Springer
This book is an introduction to high-dimensional knot theory. It uses surgery theory to provide a systematic exposition, and it serves as an introduction to algebraic surgery theory, using high-dimensional knots as the geometric motivation.
(11468 views)
Book cover: Surgery on Compact ManifoldsSurgery on Compact Manifolds
by - American Mathematical Society
This book represents an attempt to collect and systematize the methods and main applications of the method of surgery, insofar as compact (but not necessarily connected, simply connected or closed) manifolds are involved.
(8651 views)
Book cover: Geometric Topology: Localization, Periodicity and Galois SymmetryGeometric Topology: Localization, Periodicity and Galois Symmetry
by - Springer
In 1970, Sullivan circulated this set of notes introducing localization and completion of topological spaces to homotopy theory, and other important concepts. The notes remain worth reading for the fresh picture they provide for geometric topology.
(8801 views)