Lecture Notes on Differentiable Manifolds

Small book cover: Lecture Notes on Differentiable Manifolds

Lecture Notes on Differentiable Manifolds

Publisher: National University of Singapore
Number of pages: 78

Contents: Tangent Spaces, Vector Fields in Rn and the Inverse Mapping Theorem; Topological and Differentiable Manifolds, Diffeomorphisms, Immersions, Submersions and Submanifolds; Examples of Manifolds; Fibre Bundles and Vector Bundles; Tangent Bundles and Vector Fields; Riemann Metric and Cotangent Bundles; Tensor Bundles, Tensor Fields and Differential Forms; Orientation and Integration; The Exterior Derivative and the Stokes Theorem.

Download or read it online for free here:
Read online
(online reading)

Similar books

Book cover: Introduction to Differential Topology, de Rham Theory and Morse TheoryIntroduction to Differential Topology, de Rham Theory and Morse Theory
by - Radboud University
Contents: Why Differential Topology? Basics of Differentiable Manifolds; Local structure of smooth maps; Transversality Theory; More General Theory; Differential Forms and de Rham Theory; Tensors and some Riemannian Geometry; Morse Theory; etc.
Book cover: Differentiable ManifoldsDifferentiable Manifolds
The historical driving force of the theory of manifolds was General Relativity, where the manifold is four-dimensional spacetime, wormholes and all. This text is occupied with the theory of differential forms and the exterior derivative.
Book cover: Manifolds of Differentiable MappingsManifolds of Differentiable Mappings
by - Birkhauser
This book is devoted to the theory of manifolds of differentiable mappings and contains result which can be proved without the help of a hard implicit function theorem of nuclear function spaces. All the necessary background is developed in detail.
Book cover: Differential Topology of Fiber BundlesDifferential Topology of Fiber Bundles
by - FAU Erlangen-Nuernberg
From the table of contents: Basic Concepts (The concept of a fiber bundle, Coverings, Morphisms...); Bundles and Cocycles; Cohomology of Lie Algebras; Smooth G-valued Functions; Connections on Principal Bundles; Curvature; Perspectives.