Logo

Random Matrices by B. Eynard

Small book cover: Random Matrices

Random Matrices
by

Publisher: arXiv.org
Number of pages: 196

Description:
This is an introductory course about random matrices. These notes will give the reader a smell of that fascinating tool for physicists and mathematicians that are Random Matrices, and they can give the envy to learn and search more.

Home page url

Download or read it online for free here:
Download link
(1.8MB, PDF)

Similar books

Book cover: Special Functions and Their Symmetries: Postgraduate Course in Applied AnalysisSpecial Functions and Their Symmetries: Postgraduate Course in Applied Analysis
by - University of Leeds
This text presents fundamentals of special functions theory and its applications in partial differential equations of mathematical physics. The course covers topics in harmonic, classical and functional analysis, and combinatorics.
(14652 views)
Book cover: Physics, Topology, Logic and Computation: A Rosetta StonePhysics, Topology, Logic and Computation: A Rosetta Stone
by - arXiv
There is extensive network of analogies between physics, topology, logic and computation. In this paper we make these analogies precise using the concept of 'closed symmetric monoidal category'. We assume no prior knowledge of category theory.
(10112 views)
Book cover: Elements for Physics: Quantities, Qualities, and Intrinsic TheoriesElements for Physics: Quantities, Qualities, and Intrinsic Theories
by - Springer
Reviews Lie groups, differential geometry, and adapts the usual notion of linear tangent application to the intrinsic point of view proposed for physics. The theory of heat conduction and the theory of linear elastic media are studied in detail.
(15343 views)
Book cover: Lecture Notes on Mathematical Methods of Classical PhysicsLecture Notes on Mathematical Methods of Classical Physics
by - arXiv
Topics include Lagrangian Mechanics, Hamiltonian Mechanics, Hamilton-Jacobi Theory, Classical Field Theory formulated in the language of jet bundles, field theories such as sigma models, gauge theory, and Einstein's theory of general relativity.
(8535 views)