**Random Matrices**

by B. Eynard

**Publisher**: arXiv.org 2018**Number of pages**: 196

**Description**:

This is an introductory course about random matrices. These notes will give the reader a smell of that fascinating tool for physicists and mathematicians that are Random Matrices, and they can give the envy to learn and search more.

Download or read it online for free here:

**Download link**

(1.8MB, PDF)

## Similar books

**Mathematics for the Physical Sciences**

by

**Herbert S Wilf**-

**Dover Publications**

The book for the advanced undergraduates and graduates in the natural sciences. Vector spaces and matrices, orthogonal functions, polynomial equations, asymptotic expansions, ordinary differential equations, conformal mapping, and extremum problems.

(

**42273**views)

**Lectures on the Singularities of the Three-Body Problem**

by

**C.L. Siegel**-

**Tata Institute of Fundamental Research**

From the table of contents: The differential equations of mechanics; The three-body problem : simple collisions (The n-body problem); The three-body problem: general collision (Stability theory of solutions of differential equations).

(

**7794**views)

**Navier-Stokes Equations: On the Existence and the Search Method for Global Solutions**

by

**Solomon I. Khmelnik**-

**MiC**

In this book we formulate and prove the variational extremum principle for viscous incompressible and compressible fluid, from which principle follows that the Navier-Stokes equations represent the extremum conditions of a certain functional.

(

**8652**views)

**Quantum Spin Systems on Infinite Lattices**

by

**Pieter Naaijkens**-

**arXiv**

These are the lecture notes for a one semester course at Leibniz University Hannover. The main aim of the course is to give an introduction to the mathematical methods used in describing discrete quantum systems consisting of infinitely many sites.

(

**5774**views)