Logo

A Window into Zeta and Modular Physics

Large book cover: A Window into Zeta and Modular Physics

A Window into Zeta and Modular Physics
by

Publisher: Cambridge University Press
ISBN/ASIN: 0521199301
ISBN-13: 9780521199308
Number of pages: 351

Description:
This book provides an introduction, with applications, to three interconnected mathematical topics: zeta functions in their rich variety; modular forms; vertex operator algebras. Applications of the material to physics are presented.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Applications of global analysis in mathematical physicsApplications of global analysis in mathematical physics
by - Publish or Perish, inc
The book introduces some methods of global analysis which are useful in various problems of mathematical physics. The author wants to make use of ideas from geometry to shed light on problems in analysis which arise in mathematical physics.
(15310 views)
Book cover: Lectures on Diffusion Problems and Partial Differential EquationsLectures on Diffusion Problems and Partial Differential Equations
by - Tata Institute of Fundamental Research
Starting from Brownian Motion, the lectures quickly got into the areas of Stochastic Differential Equations and Diffusion Theory. The section on Martingales is based on additional lectures given by K. Ramamurthy of the Indian Institute of Science.
(8651 views)
Book cover: Introduction to Quantum IntegrabilityIntroduction to Quantum Integrability
by - arXiv
The authors review the basic concepts regarding quantum integrability. Special emphasis is given on the algebraic content of integrable models. A short review on quantum groups as well as the quantum inverse scattering method is also presented.
(9051 views)
Book cover: Lecture Notes on Quantum Brownian MotionLecture Notes on Quantum Brownian Motion
by - arXiv
Einstein's kinetic theory of the Brownian motion, based upon water molecules bombarding a heavy pollen, provided an explanation of diffusion from the Newtonian mechanics. It is a challenge to verify the diffusion from the Schroedinger equation.
(8556 views)