Logo

A Panoramic View of Riemannian Geometry

Large book cover: A Panoramic View of Riemannian Geometry

A Panoramic View of Riemannian Geometry
by

Publisher: Springer
ISBN/ASIN: 3540653171
ISBN-13: 9783540653172
Number of pages: 874

Description:
In this monumental work, Marcel Berger manages to survey large parts of present day Riemannian geometry. The book offers a great opportunity to get a first impression of some part of Riemannian geometry, together with hints for further reading.

Download or read it online for free here:
Download link
(209MB, PS)

Similar books

Book cover: Treatise on Differential Geometry and its role in Relativity TheoryTreatise on Differential Geometry and its role in Relativity Theory
by - arXiv.org
These notes will be helpful to undergraduate and postgraduate students in theoretical physics and in applied mathematics. Modern terminology in differential geometry has been discussed in the book with the motivation of geometrical way of thinking.
(581 views)
Book cover: Lectures notes on compact Riemann surfacesLectures notes on compact Riemann surfaces
by - arXiv.org
An introduction to the geometry of compact Riemann surfaces. Contents: Riemann surfaces; Functions and forms on Riemann surfaces; Abel map, Jacobian and Theta function; Riemann-Roch; Moduli spaces; Eigenvector bundles and solutions of Lax equations.
(3635 views)
Book cover: A Course in Riemannian GeometryA Course in Riemannian Geometry
by - Trinity College, Dublin
From the table of contents: Smooth Manifolds; Tangent Spaces; Affine Connections on Smooth Manifolds; Riemannian Manifolds; Geometry of Surfaces in R3; Geodesics in Riemannian Manifolds; Complete Riemannian Manifolds; Jacobi Fields.
(9819 views)
Book cover: Medians and Means in Riemannian Geometry: Existence, Uniqueness and ComputationMedians and Means in Riemannian Geometry: Existence, Uniqueness and Computation
by - arXiv
This paper is a short summary of our recent work on the medians and means of probability measures in Riemannian manifolds. The existence and uniqueness results of local medians are given. We propose a subgradient algorithm and prove its convergence.
(8322 views)