Holonomy Groups in Riemannian Geometry
by Andrew Clarke, Bianca Santoro
Publisher: arXiv 2012
Number of pages: 124
Description:
The holonomy group is one of the fundamental analytical objects that one can define on a Riemannian manfold. These notes provide a first introduction to the main general ideas on the study of the holonomy groups of a Riemannian manifold.
Download or read it online for free here:
Download link
(800KB, PDF)
Similar books

by Ilkka Holopainen, Tuomas Sahlsten
Based on the lecture notes on differential geometry. From the contents: Differentiable manifolds, a brief review; Riemannian metrics; Connections; Geodesics; Curvature; Jacobi fields; Curvature and topology; Comparison geometry; The sphere theorem.
(7476 views)

by M. Berger - Tata Institute of Fundamental Research
The main topic of these notes is geodesics. Our aim is to give a fairly complete treatment of the foundations of Riemannian geometry and to give global results for Riemannian manifolds which are subject to geometric conditions of various types.
(8414 views)

by Shlomo Sternberg
Course notes for an introduction to Riemannian geometry and its principal physical application, Einstein’s theory of general relativity. The background assumed is a good grounding in linear algebra and in advanced calculus.
(17237 views)

by D. Bao, R. Bryant, S. Chern, Z. Shen - Cambridge University Press
Finsler geometry generalizes Riemannian geometry in the same sense that Banach spaces generalize Hilbert spaces. The contributors consider issues related to volume, geodesics, curvature, complex differential geometry, and parametrized jet bundles.
(12970 views)