**Differential Topology of Fiber Bundles**

by Karl-Hermann Neeb

**Publisher**: FAU Erlangen-Nuernberg 2010**Number of pages**: 146

**Description**:

From the table of contents: Basic Concepts (The concept of a fiber bundle, Coverings, Morphisms...); Bundles and Cocycles; Cohomology of Lie Algebras; Smooth G-valued Functions; Connections on Principal Bundles; Curvature; Perspectives.

Download or read it online for free here:

**Download link**

(600KB, PDF)

## Similar books

**Contact Topology**

by

**George Torres, Robert Gompf**-

**University of Texas at Austin**

This is a course on contact manifolds, which are odd dimensional manifolds with an extra structure called a contact structure. Most of our study will focus on three dimensional manifolds, though many of these notions hold for any odd dimension.

(

**3207**views)

**Differentiable Manifolds**

by

**Nigel Hitchin**

The historical driving force of the theory of manifolds was General Relativity, where the manifold is four-dimensional spacetime, wormholes and all. This text is occupied with the theory of differential forms and the exterior derivative.

(

**17509**views)

**Ricci Flow and the Poincare Conjecture**

by

**John Morgan, Gang Tian**-

**American Mathematical Society**

This book provides full details of a complete proof of the Poincare Conjecture following Grigory Perelman's preprints. The book is suitable for all mathematicians from advanced graduate students to specialists in geometry and topology.

(

**11657**views)

**Symplectic Geometry**

by

**Ana Cannas da Silva**-

**Princeton University**

An overview of symplectic geometry – the geometry of symplectic manifolds. From a language of classical mechanics, symplectic geometry became a central branch of differential geometry and topology. This survey gives a partial flavor on this field.

(

**11567**views)