Differential Topology of Fiber Bundles
by Karl-Hermann Neeb
Publisher: FAU Erlangen-Nuernberg 2010
Number of pages: 146
Description:
From the table of contents: Basic Concepts (The concept of a fiber bundle, Coverings, Morphisms...); Bundles and Cocycles; Cohomology of Lie Algebras; Smooth G-valued Functions; Connections on Principal Bundles; Curvature; Perspectives.
Download or read it online for free here:
Download link
(600KB, PDF)
Similar books

by Ana Cannas da Silva - Princeton University
An overview of symplectic geometry – the geometry of symplectic manifolds. From a language of classical mechanics, symplectic geometry became a central branch of differential geometry and topology. This survey gives a partial flavor on this field.
(11873 views)

by Dirk Schuetz - University of Sheffield
These notes describe basic material about smooth manifolds (vector fields, flows, tangent bundle, partitions of unity, Whitney embedding theorem, foliations, etc...), introduction to Morse theory, and various applications.
(10108 views)

by Peter W. Michor - Birkhauser
This book is devoted to the theory of manifolds of differentiable mappings and contains result which can be proved without the help of a hard implicit function theorem of nuclear function spaces. All the necessary background is developed in detail.
(9772 views)

by George Torres, Robert Gompf - University of Texas at Austin
This is a course on contact manifolds, which are odd dimensional manifolds with an extra structure called a contact structure. Most of our study will focus on three dimensional manifolds, though many of these notions hold for any odd dimension.
(3532 views)