Logo

Contact Geometry by Hansjoerg Geiges

Small book cover: Contact Geometry

Contact Geometry
by

Publisher: arXiv
Number of pages: 86

Description:
This is an introductory text on the more topological aspects of contact geometry, written for the Handbook of Differential Geometry vol. 2. After discussing (and proving) some of the fundamental results of contact topology (neighbourhood theorems, isotopy extension theorems, approximation theorems), I move on to a detailed exposition of the original proof of the Lutz-Martinet theorem.

Home page url

Download or read it online for free here:
Download link
(730KB, PDF)

Similar books

Book cover: Tight and Taut SubmanifoldsTight and Taut Submanifolds
by - Cambridge University Press
Tight and taut submanifolds form an important class of manifolds with special curvature properties, one that has been studied intensively by differential geometers since the 1950's. This book contains six articles by leading experts in the field.
(12732 views)
Book cover: Symplectic GeometrySymplectic Geometry
by - Princeton University
An overview of symplectic geometry – the geometry of symplectic manifolds. From a language of classical mechanics, symplectic geometry became a central branch of differential geometry and topology. This survey gives a partial flavor on this field.
(13463 views)
Book cover: Differentiable ManifoldsDifferentiable Manifolds
by
The historical driving force of the theory of manifolds was General Relativity, where the manifold is four-dimensional spacetime, wormholes and all. This text is occupied with the theory of differential forms and the exterior derivative.
(19970 views)
Book cover: Differential Topology and Morse TheoryDifferential Topology and Morse Theory
by - University of Sheffield
These notes describe basic material about smooth manifolds (vector fields, flows, tangent bundle, partitions of unity, Whitney embedding theorem, foliations, etc...), introduction to Morse theory, and various applications.
(11851 views)