**Introduction to Commutative Algebra**

by Thomas J. Haines

**Publisher**: University of Maryland 2024**Number of pages**: 93

**Description**:

Notes for an introductory course on commutative algebra. Algebraic geometry uses commutative algebraic as its 'local machinery'. The goal of these lecture notes is to study commutative algebra and some topics in algebraic geometry in a parallel manner.

Download or read it online for free here:

**Download link**

(710KB, PDF)

## Similar books

**Commutative Algebra**

by

**Keerthi Madapusi**-

**Harvard University**

Contents: Graded Rings and Modules; Flatness; Integrality: the Cohen-Seidenberg Theorems; Completions and Hensel's Lemma; Dimension Theory; Invertible Modules and Divisors; Noether Normalization and its Consequences; Quasi-finite Algebras; etc.

(

**11880**views)

**Homological Conjectures**

by

**Tom Marley, Laura Lynch**-

**University of Nebraska - Lincoln**

This course is an overview of Homological Conjectures, in particular, the Zero Divisor Conjecture, the Rigidity Conjecture, the Intersection Conjectures, Bass' Conjecture, the Superheight Conjecture, the Direct Summand Conjecture, etc.

(

**11267**views)

**Introduction to Twisted Commutative Algebras**

by

**Steven V Sam, Andrew Snowden**-

**arXiv**

An expository account of the theory of twisted commutative algebras, which can be thought of as a theory for handling commutative algebras with large groups of linear symmetries. Examples include the coordinate rings of determinantal varieties, etc.

(

**7731**views)

**A Primer of Commutative Algebra**

by

**J.S. Milne**

These notes prove the basic theorems in commutative algebra required for algebraic geometry and algebraic groups. They assume only a knowledge of the algebra usually taught in advanced undergraduate or first-year graduate courses.

(

**10054**views)