LieART: A Mathematica Application for Lie Algebras and Representation Theory
by Robert Feger, Thomas W. Kephart
Publisher: arXiv 2012
Number of pages: 141
Description:
We present the Mathematica application LieART (Lie Algebras and Representation Theory) for computations frequently encountered in Lie Algebras and representation theory, such as tensor product decomposition and subalgebra branching of irreducible representations.
Download or read it online for free here:
Download link
(1.1MB, PDF)
Similar books

by Andrei Khrennikov, Gavriel Segre - arXiv
Contents: The hyperbolic algebra as a bidimensional Clifford algebra; Limits and series in the hyperbolic plane; The hyperbolic Euler formula; Analytic functions in the hyperbolic plane; Multivalued functions on the hyperbolic plane; etc.
(10791 views)

by Matej Pavsic - arXiv
This a book is for those who would like to learn something about special and general relativity beyond the usual textbooks, about quantum field theory, the elegant Fock-Schwinger-Stueckelberg proper time formalism, and much more.
(12470 views)

by Solomon I. Khmelnik - MiC
In this book we formulate and prove the variational extremum principle for viscous incompressible and compressible fluid, from which principle follows that the Navier-Stokes equations represent the extremum conditions of a certain functional.
(8883 views)

by A. Doikou, S. Evangelisti, G. Feverati, N. Karaiskos - arXiv
The authors review the basic concepts regarding quantum integrability. Special emphasis is given on the algebraic content of integrable models. A short review on quantum groups as well as the quantum inverse scattering method is also presented.
(8403 views)