Lectures on Geodesics in Riemannian Geometry
by M. Berger
Publisher: Tata Institute of Fundamental Research 1965
Number of pages: 317
Description:
The main topic of these notes is geodesics. Our aim is 1) to give a fairly complete treatment of the foundations of Riemannian geometry through the tangent bundle and the geodesic flow on it and 2) to give global results for Riemannian manifolds which are subject to geometric conditions of various types; these conditions involve essentially geodesics.
Download or read it online for free here:
Download link
(1.5MB, PDF)
Similar books

by Marcel Berger - Springer
In this monumental work, Marcel Berger manages to survey large parts of present day Riemannian geometry. The book offers a great opportunity to get a first impression of some part of Riemannian geometry, together with hints for further reading.
(10246 views)

by Leonor Godinho, Jose Natario
Contents: Differentiable Manifolds; Differential Forms; Riemannian Manifolds; Curvature; Geometric Mechanics; Relativity (Galileo Spacetime, Special Relativity, The Cartan Connection, General Relativity, The Schwarzschild Solution).
(7427 views)

by David R. Wilkins - Trinity College, Dublin
From the table of contents: Smooth Manifolds; Tangent Spaces; Affine Connections on Smooth Manifolds; Riemannian Manifolds; Geometry of Surfaces in R3; Geodesics in Riemannian Manifolds; Complete Riemannian Manifolds; Jacobi Fields.
(9819 views)

by D. Bao, R. Bryant, S. Chern, Z. Shen - Cambridge University Press
Finsler geometry generalizes Riemannian geometry in the same sense that Banach spaces generalize Hilbert spaces. The contributors consider issues related to volume, geodesics, curvature, complex differential geometry, and parametrized jet bundles.
(12000 views)