Logo

Lectures on Geodesics in Riemannian Geometry

Small book cover: Lectures on Geodesics in Riemannian Geometry

Lectures on Geodesics in Riemannian Geometry
by

Publisher: Tata Institute of Fundamental Research
Number of pages: 317

Description:
The main topic of these notes is geodesics. Our aim is 1) to give a fairly complete treatment of the foundations of Riemannian geometry through the tangent bundle and the geodesic flow on it and 2) to give global results for Riemannian manifolds which are subject to geometric conditions of various types; these conditions involve essentially geodesics.

Download or read it online for free here:
Download link
(1.5MB, PDF)

Similar books

Book cover: Treatise on Differential Geometry and its role in Relativity TheoryTreatise on Differential Geometry and its role in Relativity Theory
by - arXiv.org
These notes will be helpful to undergraduate and postgraduate students in theoretical physics and in applied mathematics. Modern terminology in differential geometry has been discussed in the book with the motivation of geometrical way of thinking.
(4051 views)
Book cover: A Sampler of Riemann-Finsler GeometryA Sampler of Riemann-Finsler Geometry
by - Cambridge University Press
Finsler geometry generalizes Riemannian geometry in the same sense that Banach spaces generalize Hilbert spaces. The contributors consider issues related to volume, geodesics, curvature, complex differential geometry, and parametrized jet bundles.
(15044 views)
Book cover: Holonomy Groups in Riemannian GeometryHolonomy Groups in Riemannian Geometry
by - arXiv
The holonomy group is one of the fundamental analytical objects that one can define on a Riemannian manfold. These notes provide a first introduction to the main general ideas on the study of the holonomy groups of a Riemannian manifold.
(9017 views)
Book cover: Complex Analysis on Riemann SurfacesComplex Analysis on Riemann Surfaces
by - Harvard University
Contents: Maps between Riemann surfaces; Sheaves and analytic continuation; Algebraic functions; Holomorphic and harmonic forms; Cohomology of sheaves; Cohomology on a Riemann surface; Riemann-Roch; Serre duality; Maps to projective space; etc.
(15234 views)