Logo

Spacetime Geometry and General Relativity

Small book cover: Spacetime Geometry and General Relativity

Spacetime Geometry and General Relativity
by

Publisher: King's College London
Number of pages: 48

Description:
This course is meant as introduction to what is widely considered to be the most beautiful and imaginative physical theory ever devised: General Relativity. It is assumed that you have a reasonable knowledge of Special Relativity as well as tensors.

Download or read it online for free here:
Download link
(360KB, PDF)

Similar books

Book cover: Advanced General RelativityAdvanced General Relativity
by - King's College London
Contents: Introduction; Manifolds and Tensors; General Relativity (Derivation, Diffeomorphisms as Gauge Symmetries, Weak Field Limit, Tidal Forces, ...); The Schwarzchild Black Hole; More Black Holes; Non-asymptotically Flat Solutions.
(9260 views)
Book cover: Foundations of Tensor Analysis for Students of Physics and Engineering With an Introduction to the Theory of RelativityFoundations of Tensor Analysis for Students of Physics and Engineering With an Introduction to the Theory of Relativity
by - Glenn Research Center
Tensor analysis is useful because of its great generality and compact notation. This monograph provides a conceptual foundation for students of physics and engineering who wish to pursue tensor analysis as part of their advanced studies.
(10754 views)
Book cover: Advanced General RelativityAdvanced General Relativity
by - Google Sites
Topics include: Asymptotic structure of spacetime, conformal diagrams, null surfaces, Raychaudhury equation, black holes, the holographic principle, singularity theorems, Einstein-Hilbert action, energy-momentum tensor, Noether's theorem, etc.
(11986 views)
Book cover: Beyond partial differential equations: A course on linear and quasi-linear abstract hyperbolic evolution equationsBeyond partial differential equations: A course on linear and quasi-linear abstract hyperbolic evolution equations
by - arXiv
This course introduces the use of semigroup methods in the solution of linear and nonlinear (quasi-linear) hyperbolic partial differential equations, with particular application to wave equations and Hermitian hyperbolic systems.
(13722 views)