Logo

Graph and Network Theory in Physics: A Short Introduction

Small book cover: Graph and Network Theory in Physics: A Short Introduction

Graph and Network Theory in Physics: A Short Introduction
by

Publisher: arXiv
Number of pages: 53

Description:
A book Chapter consisting of some of the main areas of research in graph theory applied to physics. It includes graphs in condensed matter theory, such as the tight-binding and the Hubbard model. It follows the study of graph theory and statistical physics by means of the analysis of the Potts model...

Home page url

Download or read it online for free here:
Download link
(1.9MB, PDF)

Similar books

Book cover: Special Functions and Their Symmetries: Postgraduate Course in Applied AnalysisSpecial Functions and Their Symmetries: Postgraduate Course in Applied Analysis
by - University of Leeds
This text presents fundamentals of special functions theory and its applications in partial differential equations of mathematical physics. The course covers topics in harmonic, classical and functional analysis, and combinatorics.
(15692 views)
Book cover: Physics, Topology, Logic and Computation: A Rosetta StonePhysics, Topology, Logic and Computation: A Rosetta Stone
by - arXiv
There is extensive network of analogies between physics, topology, logic and computation. In this paper we make these analogies precise using the concept of 'closed symmetric monoidal category'. We assume no prior knowledge of category theory.
(10991 views)
Book cover: Lecture Notes on Mathematical Methods of Classical PhysicsLecture Notes on Mathematical Methods of Classical Physics
by - arXiv
Topics include Lagrangian Mechanics, Hamiltonian Mechanics, Hamilton-Jacobi Theory, Classical Field Theory formulated in the language of jet bundles, field theories such as sigma models, gauge theory, and Einstein's theory of general relativity.
(9513 views)
Book cover: Lectures on Integrable Hamiltonian SystemsLectures on Integrable Hamiltonian Systems
by - arXiv
We consider integrable Hamiltonian systems in a general setting of invariant submanifolds which need not be compact. This is the case a global Kepler system, non-autonomous integrable Hamiltonian systems and systems with time-dependent parameters.
(8861 views)