Logo

Theory and Applications of Lattice Point Methods for Binomial Ideals

Small book cover: Theory and Applications of Lattice Point Methods for Binomial Ideals

Theory and Applications of Lattice Point Methods for Binomial Ideals
by

Publisher: arXiv
Number of pages: 57

Description:
This is a survey of methods surrounding lattice point methods for binomial ideals. The exposition is aimed at students and researchers in algebra; it includes many examples, open problems, and elementary introductions to the motivations and background from outside of algebra.

Home page url

Download or read it online for free here:
Download link
(640KB, PDF)

Similar books

Book cover: Commutative AlgebraCommutative Algebra
by - University of Georgia
Contents: Introduction to Commutative Rings; Introduction to Modules; Ideals; Examples of Rings; Swan's Theorem; Localization; Noetherian Rings; Boolean rings; Affine algebras and the Nullstellensatz; The spectrum; Integral extensions; etc.
(12428 views)
Book cover: Progress in Commutative Algebra 2: Closures, Finiteness and FactorizationProgress in Commutative Algebra 2: Closures, Finiteness and Factorization
by - De Gruyter Open
This volume contains surveys on closure operations, finiteness conditions and factorization. Closure operations on ideals and modules are a bridge between noetherian and nonnoetherian commutative algebra. It contains a guide to closure operations...
(4750 views)
Book cover: A Primer of Commutative AlgebraA Primer of Commutative Algebra
by
These notes prove the basic theorems in commutative algebra required for algebraic geometry and algebraic groups. They assume only a knowledge of the algebra usually taught in advanced undergraduate or first-year graduate courses.
(10158 views)
Book cover: Lectures on Commutative AlgebraLectures on Commutative Algebra
by - Indian Institute of Technology, Bombay
These lecture notes attempt to give a rapid review of the rudiments of classical commutative algebra. Topics covered: rings and modules, Noetherian rings, integral extensions, Dedekind domains, and primary decomposition of modules.
(9894 views)