**Convex Bodies and Algebraic Geometry**

by Tadao Oda

**Publisher**: Springer 1988**ISBN/ASIN**: 364272549X**ISBN-13**: 9783642725494**Number of pages**: 219

**Description**:

The theory of toric varieties (also called torus embeddings) describes a fascinating interplay between algebraic geometry and the geometry of convex figures in real affine spaces. This book is a unified up-to-date survey of the various results and interesting applications found since toric varieties were introduced in the early 1970's.

Download or read it online for free here:

**Download link**

(21MB, PDF)

## Similar books

**Lectures on Deformations of Singularities**

by

**Michael Artin**-

**Tata Institute of Fundamental Research**

These notes are based on a series of lectures given in 1973. The lectures are centered about the work of M. Scahlessinger and R. Elkik on infinitesimal deformations. Contents: Formal Theory and Computations; Elkik's Theorems on Algebraization.

(

**6095**views)

**Introduction To Algebraical Geometry**

by

**A. Clement Jones**-

**Oxford University Press**

The author's aim has been to produce a book suitable to the beginner who wishes to acquire a sound knowledge of the more elementary parts of the subject, and also sufficient for the candidate for a mathematical scholarship.

(

**3285**views)

**Lectures on Logarithmic Algebraic Geometry**

by

**Arthur Ogus**-

**University of California, Berkeley**

Logarithmic geometry deals with two problems in algebraic geometry: compactification and degeneration. Contents: The geometry of monoids; Log structures and charts; Morphisms of log schemes; Differentials and smoothness; De Rham and Betti cohomology.

(

**10084**views)

**Lectures on An Introduction to Grothendieck's Theory of the Fundamental Group**

by

**J.P. Murre**-

**Tata Institute of Fundamental Research**

The purpose of this text is to give an introduction to Grothendieck's theory of the fundamental group in algebraic geometry with the study of the fundamental group of an algebraic curve over an algebraically closed field of arbitrary characteristic.

(

**5995**views)