**Lecture Notes in Machine Learning**

by Zdravko Markov

**Publisher**: Central Connecticut State University 2003**Number of pages**: 65

**Description**:

Contents: Introduction; Concept learning; Languages for learning; Version space learning; Induction of Decision trees; Covering strategies; Searching the generalization / specialization graph; Inductive Logic Progrogramming; Unsupervised Learning; Explanation-based Learning.

Download or read it online for free here:

**Download link**

(340KB, PDF)

## Similar books

**An Introduction to Statistical Learning**

by

**G. James, D. Witten, T. Hastie, R. Tibshirani**-

**Springer**

This book provides an introduction to statistical learning methods. It contains a number of R labs with detailed explanations on how to implement the various methods in real life settings and it is a valuable resource for a practicing data scientist.

(

**5782**views)

**Bayesian Reasoning and Machine Learning**

by

**David Barber**-

**Cambridge University Press**

The book is designed for final-year undergraduate students with limited background in linear algebra and calculus. Comprehensive and coherent, it develops everything from basics to advanced techniques within the framework of graphical models.

(

**16507**views)

**Information Theory, Inference, and Learning Algorithms**

by

**David J. C. MacKay**-

**Cambridge University Press**

A textbook on information theory, Bayesian inference and learning algorithms, useful for undergraduates and postgraduates students, and as a reference for researchers. Essential reading for students of electrical engineering and computer science.

(

**22247**views)

**Boosting: Foundations and Algorithms**

by

**Robert E. Schapire, Yoav Freund**-

**The MIT Press**

Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate 'rules of thumb'. A remarkably rich theory has evolved around boosting, with connections to a range of topics.

(

**2754**views)