**Lecture Notes in Machine Learning**

by Zdravko Markov

**Publisher**: Central Connecticut State University 2003**Number of pages**: 65

**Description**:

Contents: Introduction; Concept learning; Languages for learning; Version space learning; Induction of Decision trees; Covering strategies; Searching the generalization / specialization graph; Inductive Logic Progrogramming; Unsupervised Learning; Explanation-based Learning.

Download or read it online for free here:

**Download link**

(340KB, PDF)

## Similar books

**Inductive Logic Programming: Theory and Methods**

by

**Stephen Muggleton, Luc de Raedt**-

**ScienceDirect**

Inductive Logic Programming is a new discipline which investigates the inductive construction of first-order clausal theories from examples and background knowledge. The authors survey the most important theories and methods of this new field.

(

**20709**views)

**Optimal and Learning Control for Autonomous Robots**

by

**Jonas Buchli, et al.**-

**arXiv.org**

The starting point is the formulation of of an optimal control problem and deriving the different types of solutions and algorithms from there. These lecture notes aim at supporting this unified view with a unified notation wherever possible.

(

**703**views)

**Information Theory, Inference, and Learning Algorithms**

by

**David J. C. MacKay**-

**Cambridge University Press**

A textbook on information theory, Bayesian inference and learning algorithms, useful for undergraduates and postgraduates students, and as a reference for researchers. Essential reading for students of electrical engineering and computer science.

(

**14598**views)

**Learning Deep Architectures for AI**

by

**Yoshua Bengio**-

**Now Publishers**

This book discusses the principles of learning algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning of single-layer models such as Restricted Boltzmann Machines, used to construct deeper models.

(

**1858**views)