Logo

Combinatorial Theory by Gian-Carlo Rota

Small book cover: Combinatorial Theory

Combinatorial Theory
by


Number of pages: 414

Description:
In 1998, Gian-Carlo Rota gave his famous course, Combinatorial Theory, at MIT for the last time. John N. Guidi taped the lectures and took notes which he then wrote up in an almost verbatim manner conveying the substance and some of the atmosphere of the course. Topics covered included sets, relations, enumeration, order, matching, matroids, and geometric probability.

Home page url

Download or read it online for free here:
Download link
(7.8MB, PDF)

Similar books

Book cover: Foundations of Combinatorics with ApplicationsFoundations of Combinatorics with Applications
by - Dover Publications
This introduction to combinatorics, the interaction between computer science and mathematics, is suitable for upper-level undergraduates and graduate students in engineering, science, and mathematics. Some ability to construct proofs is assumed.
(5389 views)
Book cover: Combinatorics Through Guided DiscoveryCombinatorics Through Guided Discovery
by - Dartmouth College
This is an introduction to combinatorial mathematics, also known as combinatorics. The book focuses especially but not exclusively on the part of combinatorics that mathematicians refer to as 'counting'. The book consists almost entirely of problems.
(4593 views)
Book cover: Algebraic and Geometric Methods in Enumerative CombinatoricsAlgebraic and Geometric Methods in Enumerative Combinatorics
by - arXiv
The main goal of this survey is to state clearly and concisely some of the most useful tools in algebraic and geometric enumeration, and to give many examples that quickly and concretely illustrate how to put these tools to use.
(2566 views)
Book cover: Applied CombinatoricsApplied Combinatorics
by - Georgia Institute of Technology
The purpose of the course is to give students a broad exposure to combinatorial mathematics, using applications to emphasize fundamental concepts and techniques. Our approach to the course is to show students the beauty of combinatorics.
(3235 views)