**Introduction To Algebraical Geometry**

by A. Clement Jones

**Publisher**: Oxford University Press 1912**ISBN/ASIN**: B00085DFO0**Number of pages**: 558

**Description**:

The author's aim has been to produce a book suitable to the beginner who wishes to acquire a sound knowledge of the more elementary parts of the subject, and also sufficient for the candidate for a mathematical scholarship. The syllabus for Honour Moderations at Oxford has been taken as a maximum limit.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**Algebraic Groups and Discontinuous Subgroups**

by

**Armand Borel, George D. Mostow**-

**American Mathematical Society**

The book covers linear algebraic groups and arithmetic groups, adeles and arithmetic properties of algebraic groups, automorphic functions and spectral decomposition of L2-spaces, vector valued cohomology and deformation of discrete subgroups, etc.

(

**11506**views)

**Introduction to Projective Varieties**

by

**Enrique Arrondo**-

**Universidad Complutense de Madrid**

The scope of these notes is to present a soft and practical introduction to algebraic geometry, i.e. with very few algebraic requirements but arriving soon to deep results and concrete examples that can be obtained 'by hand'.

(

**7306**views)

**Quasi-Projective Moduli for Polarized Manifolds**

by

**Eckart Viehweg**-

**Springer**

This book discusses two subjects of quite different nature: Construction methods for quotients of quasi-projective schemes by group actions or by equivalence relations and properties of direct images of certain sheaves under smooth morphisms.

(

**8366**views)

**Lectures on the topological recursion for Higgs bundles and quantum curves**

by

**Olivia Dumitrescu, Motohico Mulase**-

**arXiv**

The paper aims at giving an introduction to the notion of quantum curves. The main purpose is to describe the discovery of the relation between the topological recursion and the quantization of Hitchin spectral curves associated with Higgs bundles.

(

**3664**views)