**An Introduction to the Theory of Groups of Finite Order**

by Harold Hilton

**Publisher**: Oxford Clarendon Press 1908**ISBN/ASIN**: 1517364175**Number of pages**: 260

**Description**:

This book aims at introducing the reader to more advanced treatises and original papers on Groups of finite order. The subject requires for its study only an elementary knowledge of Algebra (especially Theory of Numbers), but the average student may nevertheless find the many excellent existing treatises rather stiff reading. I have tried to lighten for him the initial difficulties, and to show that even the most recent developments of pure Mathematics are not necessarily beyond the reach of the ordinary mathematical reader.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**Finite Group Schemes**

by

**Richard Pink**-

**ETH Zurich**

The aim of the lecture course is the classification of finite commutative group schemes over a perfect field of characteristic p, using the classical approach by contravariant Dieudonne theory. The theory is developed from scratch.

(

**8592**views)

**Congruence Lattices of Finite Algebras**

by

**William DeMeo**-

**arXiv**

We review a number of methods for finding a finite algebra with a given congruence lattice, including searching for intervals in subgroup lattices. We also consider methods for proving that algebras with a given congruence lattice exist...

(

**8365**views)

**Frobenius Splittings and B-Modules**

by

**Wilberd van der Kallen**-

**Springer**

The course given by the author in 1992 explains the solution by O. Mathieu of some conjectures in the representation theory of arbitrary semisimple algebraic groups. The conjectures concern filtrations of 'standard' representations.

(

**7999**views)

**Introduction to Arithmetic Groups**

by

**Dave Witte Morris**-

**arXiv**

This revised version of a book in progress on arithmetic groups and locally symmetric spaces contains several additional chapters, including the proofs of three major theorems of G. A. Margulis (superrigidity, arithmeticity, and normal subgroups).

(

**9578**views)