**Ordinary Differential Equations and Dynamical Systems**

by Gerald Teschl

**Publisher**: Universitaet Wien 2009**Number of pages**: 297

**Description**:

This book provides an introduction to ordinary differential equations and dynamical systems. We start with some simple examples of explicitly solvable equations. Then we prove the fundamental results concerning the initial value problem: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore we consider linear equations, the Floquet theorem, and the autonomous linear flow.

Download or read it online for free here:

**Download link**

(3MB, PDF)

## Similar books

**Fractal Analysis**

by

**Sid-Ali Ouadfeul (ed.)**-

**InTech**

The aim of this book is to show some applications of fractal analysis in the sciences. The first chapter introduces the readers to the book, while the second chapter shows the methods and challenges of fractal analysis of time-series data sets...

(

**5408**views)

**A Short Introduction to Classical and Quantum Integrable Systems**

by

**O. Babelon**

An introduction to integrable systems. From the table of contents: Integrable dynamical systems; Solution by analytical methods; Infinite dimensional systems; The Jaynes-Cummings-Gaudin model; The Heisenberg spin chain; Nested Bethe Ansatz.

(

**12419**views)

**Monotone Dynamical Systems**

by

**M.W. Hirsch, Hal Smith**

From the table of contents: Introduction; Strongly Order-Preserving Semiflows; Generic Convergence and Stability; Ordinary Differential Equations; Delay Differential Equations; Monotone Maps; Semilinear Parabolic Equations.

(

**11572**views)

**Chaos Theory**

by

**Kais A. Mohamedamen Al Naimee (ed.)**-

**InTech**

With a good background in nonlinear dynamics, chaos theory, and applications, the authors give a treatment of the basic principles of nonlinear dynamics in different fields. In addition, they show overlap with the traditional field of control theory.

(

**6632**views)