Logo

Lecture Notes in Quantum Mechanics

Lecture Notes in Quantum Mechanics
by

Publisher: arXiv
Number of pages: 285

Description:
These lecture notes cover undergraduate textbook topics and also additional advanced topics at the same level of presentation. In particular: EPR and Bell; Basic postulates; The probability matrix; Measurement theory; Entanglement; Quantum computation; Wigner-Weyl formalism; The adiabatic picture; Berry phase; Linear response theory; Kubo formula; Modern approach to scattering theory with mesoscopic orientation; Theory of the resolvent and the Green function; Gauge and Galilei Symmetries; Motion in magnetic field; Quantum Hall effect; Quantization of the electromagnetic field; Fock space formalism.

Home page url

Download or read it online for free here:
Download link
(2MB, PDF)

Similar books

Book cover: Lectures on the Quantum Hall EffectLectures on the Quantum Hall Effect
by - University of Cambridge
These lectures describe the basic theoretical structures underlying the quantum Hall effect. The focus is on the interplay between microscopic wavefunctions, long-distance effective Chern-Simons theories, and the modes which live on the boundary.
(1911 views)
Book cover: Quantum MechanicsQuantum Mechanics
by - Utah State University
This text will survey the foundations of quantum mechanics, basic techniques for its application to the real world, and a number of standard examples. It is assumed that you have already had a previous undergraduate course in quantum mechanics.
(6483 views)
Book cover: Advances in Quantum MechanicsAdvances in Quantum Mechanics
by - InTech
The development of quantum mechanics has taken physics in a vastly new direction from that of classical physics from the very start. In fact, there continue at present to be many developments in the subject of a very fundamental nature...
(5114 views)
Book cover: Decoherence: Basic Concepts and Their InterpretationDecoherence: Basic Concepts and Their Interpretation
by - arXiv
Introduction to the theory of decoherence. Contents: Phenomenon of decoherence: superpositions, superselection rules, decoherence by measurements; Observables as a derivable concept; Measurement problem; Density matrix, coarse graining, and events.
(6250 views)