Geometry Unbound
by Kiran S. Kedlaya
2006
Number of pages: 142
Description:
The original text underlying this book was a set of notes for the Math Olympiad Program, the annual summer program to prepare U.S. high school students for the International Mathematical Olympiad. The original notes were intended to bridge the gap between the knowledge of Euclidean geometry of American IMO prospects and that of their counterparts from other countries. They included a large number of challenging problems culled from Olympiad-level competitions from around the world. In revising the old text, author attempted to usher the reader from Euclidean geometry to the gates of "geometry" as the term is defined by modern mathematicians, using the solving of routine and nonroutine problems as the vehicle for discovery.
Download or read it online for free here:
Download link
(0.6MB, PDF)
Similar books
by Joseph M. Landsberg - arXiv
Homogeneous varieties, Topology and consequences Projective differential invariants, Varieties with degenerate Gauss images, Dual varieties, Linear systems of bounded and constant rank, Secant and tangential varieties, and more.
(16578 views)
by J.S. Milne
These notes are an introduction to the theory of algebraic varieties. In contrast to most such accounts they study abstract algebraic varieties, not just subvarieties of affine and projective space. This approach leads naturally to scheme theory.
(16132 views)
by U. Bruzzo
Introduction to algebraic geometry for students with an education in theoretical physics, to help them to master the basic algebraic geometric tools necessary for algebraically integrable systems and the geometry of quantum field and string theory.
(11598 views)
by Sudhir R. Ghorpade - Indian Institute of Technology Bombay
This text is a brief introduction to algebraic geometry. We will focus mainly on two basic results in algebraic geometry, known as Bezout's Theorem and Hilbert's Nullstellensatz, as generalizations of the Fundamental Theorem of Algebra.
(10513 views)