**Higher Operads, Higher Categories**

by Tom Leinster

**Publisher**: arXiv 2003**ISBN/ASIN**: 0521532159**ISBN-13**: 9780521532150**Number of pages**: 410

**Description**:

Higher-dimensional category theory is the study of n-categories, operads, braided monoidal categories, and other such exotic structures. It draws its inspiration from areas as diverse as topology, quantum algebra, mathematical physics, logic, and theoretical computer science. This is the first book on the subject and lays its foundations.

Download or read it online for free here:

**Download link**

(3MB, PDF)

## Similar books

**Model Categories and Simplicial Methods**

by

**Paul Goerss, Kristen Schemmerhorn**-

**Northwestern University**

There are many ways to present model categories, each with a different point of view. Here we would like to treat model categories as a way to build and control resolutions. We are going to emphasize the analog of projective resolutions.

(

**5548**views)

**Category Theory and Functional Programming**

by

**Mikael Vejdemo-Johansson**-

**University of St. Andrews**

An introduction to category theory that ties into Haskell and functional programming as a source of applications. Topics: definition of categories, special objects and morphisms, functors, natural transformation, (co-)limits and special cases, etc.

(

**7428**views)

**Notes on Categories and Groupoids**

by

**P. J. Higgins**-

**Van Nostrand Reinhold**

A self-contained account of the elementary theory of groupoids and some of its uses in group theory and topology. Category theory appears as a secondary topic whenever it is relevant to the main issue, and its treatment is by no means systematic.

(

**9776**views)

**Introduction to Categories and Categorical Logic**

by

**Samson Abramsky, Nikos Tzevelekos**-

**arXiv**

These notes provide a succinct, accessible introduction to some of the basic ideas of category theory and categorical logic. The main prerequisite is a basic familiarity with the elements of discrete mathematics: sets, relations and functions.

(

**7208**views)