Logo

Higher Operads, Higher Categories

Large book cover: Higher Operads, Higher Categories

Higher Operads, Higher Categories
by

Publisher: arXiv
ISBN/ASIN: 0521532159
ISBN-13: 9780521532150
Number of pages: 410

Description:
Higher-dimensional category theory is the study of n-categories, operads, braided monoidal categories, and other such exotic structures. It draws its inspiration from areas as diverse as topology, quantum algebra, mathematical physics, logic, and theoretical computer science. This is the first book on the subject and lays its foundations.

Home page url

Download or read it online for free here:
Download link
(3MB, PDF)

Similar books

Book cover: Categories, Types, and StructuresCategories, Types, and Structures
by - MIT Press
Here is an introduction to category theory for the working computer scientist. It is a self-contained introduction to general category theory and the mathematical structures that constitute the theoretical background.
(19704 views)
Book cover: Seminar on Triples and Categorical Homology TheorySeminar on Triples and Categorical Homology Theory
by - Springer
This volume concentrates a) on the concept of 'triple' or standard construction with special reference to the associated 'algebras', and b) on homology theories in general categories, based upon triples and simplicial methods.
(12592 views)
Book cover: Category Theory for Computing ScienceCategory Theory for Computing Science
by - Prentice Hall
This book is a textbook in basic category theory, written specifically to be read by researchers and students in computing science. We expound the constructions basic to category theory in the context of applications to computing science.
(10935 views)
Book cover: Notes on Categories and GroupoidsNotes on Categories and Groupoids
by - Van Nostrand Reinhold
A self-contained account of the elementary theory of groupoids and some of its uses in group theory and topology. Category theory appears as a secondary topic whenever it is relevant to the main issue, and its treatment is by no means systematic.
(16333 views)