**Proofs and Concepts: the fundamentals of abstract mathematics**

by Dave Witte Morris, Joy Morris

**Publisher**: University of Lethbridge 2009**Number of pages**: 220

**Description**:

This free undergraduate textbook provides an introduction to proofs, logic, sets, functions, and other fundamental topics of abstract mathematics. It is designed to be the textbook for a bridge course that introduces undergraduates to abstract mathematics, but it is also suitable for independent study by undergraduates (or mathematically mature high-school students), or for use as a very inexpensive supplement to undergraduate courses in any field of abstract mathematics.

Download or read it online for free here:

**Download link**

(1.8MB, PDF)

## Similar books

**An Introduction to Mathematical Reasoning**

by

**Peter J. Eccles**-

**Cambridge University Press**

This book introduces basic ideas of mathematical proof to students embarking on university mathematics. The emphasis is on constructing proofs and writing clear mathematics. This is achieved by exploring set theory, combinatorics and number theory.

(

**8289**views)

**Fundamental Concepts of Mathematics**

by

**Farshid Hajir**-

**University of Massachusetts**

Problem Solving, Inductive vs. Deductive Reasoning, An introduction to Proofs; Logic and Sets; Sets and Maps; Counting Principles and Finite Sets; Relations and Partitions; Induction; Number Theory; Counting and Uncountability; Complex Numbers.

(

**14081**views)

**A Gentle Introduction to the Art of Mathematics**

by

**Joseph Fields**-

**Southern Connecticut State University**

The point of this book is to help you with the transition from doing math at an elementary level (concerned mostly with solving problems) to doing math at an advanced level (which is much more concerned with axiomatic systems and proving statements).

(

**13597**views)

**Proofs in Mathematics**

by

**Alexander Bogomolny**-

**Interactive Mathematics Miscellany and Puzzles**

I'll distinguish between two broad categories. The first is characterized by simplicity. In the second group the proofs will be selected mainly for their charm. Most of the proofs in this book should be accessible to a middle grade school student.

(

**10506**views)